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Over the last years, fractal and multifractal geometries were applied extensively in many medical signal
(1D, 2D or 3D) analysis applications like pattern recognition, texture analysis and segmentation. Applica-
tion of this geometry relies heavily on the estimation of the fractal features. Various methods were pro-
posed to estimate the fractal dimension or multifractal spectral of a signal. This article presents an
overview of these algorithms, the way they work, their benefits and their limits. The aim of this review
is to explain and to categorize the various algorithms into groups and their application in the field of
medical signal analysis.
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1. Introduction

The idea of describing natural phenomena by studying statisti-
cal scaling laws is not recent. Indeed, many studies were carried
out on this topic (Bachelier, 1900; Frish, 1995; Kolmogorov,
1941; Mandelbrot, 1963). However, there has been a recent resur-
gence of interest in this approach. A great number of physical sys-
tems tend to present similar behaviours on different scales of
observation. In the 1960s, the mathematician Benoît Mandelbrot
used the adjective ‘‘fractal” to indicate objects whose complex
geometry cannot be characterized by an integral dimension.

The main attraction of fractal geometry stems from its ability to
describe the irregular or fragmented shape of natural features as
well as other complex objects that traditional Euclidean geometry
fails to analyse. This phenomenon is often expressed by spatial or
time-domain statistical scaling laws and is mainly characterized by
the power-law behaviour of real-world physical systems. This con-
cept enables a simple, geometrical interpretation and is frequently
encountered in a variety of fields, such as geophysics, biology or
fluid mechanics. To this end, Mandelbrot introduced the notion
of fractal sets (Mandelbrot, 1977), which enables to take into ac-
count the degree of regularity of the organizational structure re-
lated to the physical system’s behaviour.

Fractal geometry is widely used in image analysis problems in
general and especially in the medical field. It is applied in different
ways with different results. However, there has been no review pa-
ll rights reserved.
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per to digest these different methods and their application. The
purpose of this paper is to provide a survey of these methods
and to discuss the principal results. This research may provide
assistance to researchers aiming to use this geometry in medical
imaging applications. It is organised as follow: in the next section,
we introduce more formally the fractals; Section 3 discusses the
relevance of fractals in image analysis. Section 4 gives the survey
of the methods, their principles and limitations. Sections 5 and 6
are respectively reserved to multifractal analysis and the associ-
ated algorithms. Section 7 discusses the main applications of frac-
tals/multifractals in the medical image analysis procedures and the
methods used.

2. Fractals and dimensions

A definition that can illustrate the notion of fractal can be as fol-
lows: consider an object. One has to take an element of this object.
One has to surround it with a sphere of a given radius R and count
the amount of object elements R inside the sphere. The measure of
R can be arbitrary. Here, of importance is only the dependence of R
on the sphere radius after averaging over the element put in its ori-
gin. This definition takes into account the fact that the relevant
dimension of an object depends on the spatial scale.

A fundamental characteristic of fractal objects is that their mea-
sured metric properties, such as length or area, are a function of the
scale of measurement. A classical example to illustrate this prop-
erty is the ‘‘length” of a coastline (Mandelbrot, 1967). When mea-
sured at a given spatial scale d, the total length of a crooked
coastline L(d) is estimated as a set of N straightline segments of
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length d. Because small details of the coastline not recognized at
lower spatial resolutions become apparent at higher spatial resolu-
tions, the measured length L(d) increases as the scale of measure-
ment d increases. Thus, in fractal geometry, the Euclidean concept
of ‘‘length” becomes a process rather than an event, and this pro-
cess is controlled by a constant parameter (Fig. 1).

More formally, Mandelbrot (1983) defined a fractal set as a set
for which the Hausdorff dimension (Dh) is greater than its topolog-
ical dimension (DT). With:

The Hausdorff–Besicovitch dimension Dh is defined as the loga-
rithmic ratio between the number N of an object’s internal
homotheties and the reciprocal of the common ratio r of this
homothety:

Dh ¼
lnðNÞ
ln 1

r

� � ð1Þ

The homothety term could be associated to a reduction term. For
example, a fractal respecting Eq. (1) will be constituted of N pat-
terns of which the size has been reduced of a factor r (for
homothety).

The topological dimension DT (defined by recurrence) of an ob-
ject corresponds to the number of independent variables needed to
describe it. Thus, a point has a 0-dimensional, a curve has a 1-
dimensional, a plane has a 2-dimensional, and in general euclidean
space Rn has n-dimensional.

Still according to Mandelbrot (1967), analytically, the relation-
ship between the measuring scale d and the length L can be ex-
pressed as:

LðdÞ ¼ K � dð1� DÞ ð2Þ

where K is a constant and D is known as the fractal dimension, a non
integer number (fractional). It is the main tool used to describe the
fractal geometry and the heterogeneity of irregular shapes. It allows
capturing what is lost in traditional geometrical representation of
shapes. In Euclidean geometry, topological dimensions (DT) of forms
remain constant and do not provide detail about the irregularity of
the form. For instance, in 1D, DT is unable to distinguish a straight
line and a crooked line.

From another side, fractals are considered as self-similar ob-
jects. This last feature is a key issue in fractals. It implies that the
object looks similar to its zoomed part. Formally, self-similarity
is defined as a property where a subset, when magnified to the size
of the whole, is indistinguishable from the whole (Mandelbrot,
1967).

In the same context, fractals are said self-affine if the variation
in one direction scales differently than the variation in another
direction (Mandelbrot, 1985). Whereas, self-similar objects are
isotropic.

3. Fractals and image analysis

The diagnostic interpretation of medical images is a multi-steps
task where the aim is the detection of potential abnormalities. This
goal is accurately achieved when the clinician integrates two pro-
cesses. The first is the image perception to recognize unique image
patterns and the second is the identification of the relationship be-
tween perceived patterns and possible diagnoses. The success of
these two steps relies heavily on the clinician skill. One of the used
features in this process is texture which is a rich source of visual
Fig. 1. The first iterations to build a fractal structure.
information and is a key component in image analysis and under-
standing in humans. Texture is known to provide cues about scenic
depth and surface orientation and, as such, describes the content of
both natural and artificial images. Also, there is evidence of percep-
tual learning in texture-coding mechanisms and in textural dis-
crimination (Tourassi, 1999).

In light of this, many studies were conducted to develop algo-
rithms that can quantify the textural properties of an image. How-
ever, the exciting evolution of both texture analysis algorithms and
computer technology revived researchers’ interest in applications
for medical imaging in recent years. During the past decade, results
from numerous published articles have shown the ability of tex-
ture analysis algorithms to extract diagnostically meaningful infor-
mation from medical images that were obtained with various
imaging modalities, such as chest radiography, mammography,
ultrasound (US), computed tomography (CT), single photon emis-
sion computed tomography (SPECT), positron emission tomogra-
phy (PET) and magnetic resonance imaging (MRI).

The applicability and the relevance of fractal geometry in med-
ical image analysis is justified by the fact that self-similarity can
hardly be verified in biological objects imaged with a finite resolu-
tion. Indeed, the images are not only spectrally and spatially com-
plex, but they often exhibit certain similarities at different spatial
scales. This assertion induces that spatially complex patterns could
be described by simple texture features. In fact, the problem of fea-
tures definition for texture analysis in image understanding and
pattern recognition was an increasing research domain for many
years (Haralick et al., 1973; Pratt et al., 1978). Precisely, fractal
geometry offers the ability to describe and to characterize the com-
plexity of the images or more precisely of their texture
composition.
4. Fractal dimension computing methods

When applied in image analysis, fractal geometry is often
brought to the evaluation of the fractal dimension (referred to as
FD or D). Many methods exist to compute this dimension; each
method has its own theoretic basis. This fact often leads to obtain
different dimensions by different methods for the same feature.
These differences appear because the Hausdorff–Besicovitch
dimension (Eq. (1)) is not computable in this form in most cases.
Thus, the methods approximate it using different algorithms to
estimate the parameter N.

Although, the applied algorithms differ, they obey to the same
basis summarized by the three steps:

– Measure the quantities of the object using various step sizes.
– Plot log (measured quantities) versus log (step sizes) and fit a

least-squares regression line through the data points.
– Estimate FD as the slope of the regression line.

In the next paragraph, we present and classify the most wide-
spread literature methods grouped into three classes: box-count-
ing methods; fractional Brownian motion (fBm) methods, and
area measurement methods.

The first methods were the box-counting methods. In these
methods the signals are represented on a finite scale grid and the
grid effects interplayed with the computing fractal dimension.
For this reason, other methods have been defined to remove the
grid effects such as the fBm methods.

4.1. Box-counting methods

Methods in this class share the following steps: each algorithm
requires a meshing of the signal, formulation of a probability in
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each generated box and the estimation of the FD by a least-squares
linear fitting as last step. The box-counting methods have been the
first methods to compute the FD of a signal. Their principles were
simple and easy to develop, but, as it will be shown below, they
present some drawbacks.

4.1.1. Box-counting method (BC)
This method was defined by Russel et al. (1980), it is the most

frequently used and most popular method. By covering a binary
signal with boxes of length r, the FD is estimated as:

FD ¼ � lim
r!0

logðNðrÞÞ
logðrÞ ð3Þ

where N(r) is number of boxes needed to completely cover the
signal.

This method has many limitations because it requires signal
binarization. Later on, Normant and Tricot (1991) showed that this
method is not theoretically well founded and is valid only for sta-
tistically self-similar signals.

Moreover, as the reiteration for different sizes of r can produce
various sizes of Nr, the grid should be randomly relocated at each
iteration (Appleby, 1996). More recently, Pruess (2007) showed
that the computation of the FD is box size sensitive.

Always in the box-counting methods class, the compass method
defined by Mandelbrot (1983) and the yardstick method defined
by Sanderson and Goulding (1990) in 1990 presented the same
drawbacks.

4.1.2. Differential box-counting method (DBCM)
Differential box-counting method (DBCM) is an adaptation of

the box-counting method. It was proposed by Chaudhuri and Sar-
kar (1995) to solve some of limitations of the BM method. It has the
advantage to work on grey-scale images and thus the binarization
step is avoided. The signal is partitioned into boxes of various size r
and N(r) is computed like the difference between the minimum
and the maximum grey levels in the (i, j)th box. This step is re-
peated for all boxes and the FD is estimated as in Eq. (3).

An important limit of the box-counting methods is the choice of
the box size. Many studies were done to find the upper and lower
bounds for the box size and in this regard (Chen et al., 1993) pro-
posed a theoretical justification for a restriction on the smallest
box size inspired by the work of Pickover and Khorasani (1986).
Also Bisoi and Mishra (2001) established a lower bound of the
box size to ensure accurate results. They showed that, with a too
low box size, the maximum number of boxes above the grid would
be more than the number of available intensity levels. The result-
ing unaccounted boxes would lead to an underestimation of FD. In
the same manner, for a too high box size, the number of boxes
would be much less than the number of intensity levels.

Asvestas et al. (1998) showed that this method was not numer-
ically stable. Indeed they tested this method on a set of images
generated by the random midpoint displacement method. They
highlighted the fact that the method underestimates the true value
of FD.

Improvements of the ‘‘differential box-counting” method are
described in (Biswas et al., 1998; Jin et al., 1995).

4.1.3. ‘‘Extended counting” method (XCM)
The extended counting method ‘‘XCM” (Sandau and Kurz, 1997)

was proposed as an alternative to the BCM. The principle of the
XCM can be formulated as follows: The BCM is applied to many
subsets of a fractal set and the maximum of the subsets’ dimen-
sions is taken as the FD of the set. On the other hand, the BCM,
as it is used for subsets, it is extremely simplified (a box-counting
regression line is built only on the basis of two points).
This method can be compared to the BCM because the FD is
computed on binary signals. Although the BCM is the most wide-
spread, Sandau and Kurz (1997) showed that the XCM presents
some benefits. Indeed, XCM, in contrast to BCM, calculates a mea-
sure of complexity without regression. Hence, this measure grows
monotonously with complexity and is determined by the most
complex region of the signal. This corresponds to an important fea-
ture of FD, the maximum property, which is approximately fulfilled
by XCM, but not by BCM. Also, XCM is less sensitive to the signal
rotation and translation influence.

The drawbacks of this method are that it can only be applied to
binary signals. Hence, it is often used to compute the FD of a skel-
etonized image (Chung et al., 2002). Moreover XCM has tendency
to overestimate the FD. Finally, Prigarin et al. (2008) tested XCM
on fractional Brownian signals and concluded that the XCM is
not suitable for these signals.

4.2. Fractional Brownian motion (fBm) methods

The fractal model based on fBm is a non-stationary model and is
often used to describe random phenomenon. Pentland (1984)
showed that most fractals encountered in physical models are frac-
tal Brownian functions (fBfs). An fBf (Mandelbrot, 1975) f is a gen-
eralization of Brownian motion where the expected value of the
intensity difference between two points is zero but where the
square of the difference is proportional to the distance between
the points at a power 2H.

The FD of an n-dimension fBf is defined by:

FD ¼ nþ 1� H ð4Þ

Fractal Brownian functions are statistically self-affine (Mandelbrot,
1983). It follows that linear transformations and scalings of a fBf do
not affect its FD. With this formalism, the FD of a fractal Brownian
function is invariant with transformations.

Two algorithms are commonly used to estimate the FD of an
image considered to be a 2D fractal Brownian function. They are
based either on the variogram or the Fourier transform of the
image.

4.2.1. Variogram method
The variogram method is based on the statistical Gaussian mod-

elling of images. Given a FD, it is possible to use fractional Brown-
ian motion modelling to create a corresponding image. This
method attempts to solve the inverse problem: given an image,
the FD is estimated by assuming that it is derived from a fractional
Brownian motion (Goodchild, 1980).

This algorithm provides robust estimations of the FD (Soille and
Rivest, 1996). Indeed the advantages of the variogram method are
its applicability to irregularly distributed data sets and to surfaces
with an underlying trend, as commonly occur in topography. For
surfaces with a trend of higher than linear order, the residual vari-
ogram is preferable. Although the theoretical derivation assumes
second-order stationarity, the surface does not need to be station-
ary to use the variogram method. However it was shown that
dividing a signal into an insufficient number of clusters makes
the variogram method enable to estimate the FD, but when a suf-
ficient large number of clusters is used it is possible to detect a very
sharp drop toward the correct value, followed by slow convergence
(Kolibal and Monde, 1998).

On the other hand, the variogram method yields accurate re-
sults only for low dimensions surfaces. For higher dimensions sur-
faces, the method is unstable (Lam et al., 2002).

4.2.2. The power spectrum
Power spectrum method (Pentland, 1984) is based on the power

spectrum dependence of fractional Brownian motion. In this
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method, each image line is Fourier transformed, the power spec-
trum is evaluated and then all these power spectra are averaged.
FD is computed as the slope.

The Fourier method is ideal for the self-affine surfaces analysis
and for simulation. Unfortunately, the method is slow and requires
gridded data. The radial calculation scheme works only for isotro-
pic surfaces.

Asvestas et al. (1998) defined a modified version to estimate the
FD of a two variable fBm functions from its average power spec-
trum. The method is called Power Differentiation method. The
authors showed that their method is more robust in the presence
of white noise.

The main drawback is that the method is efficient only with sur-
faces exhibiting an exponential power spectrum. In general, this
restriction imposed on the shape of the power spectrum is not va-
lid and this may cause errors in the calculation of FD (Osborne and
Provenzale, 1989).

4.3. Area measurement methods

Area measurement methods use structuring elements (triangle,
erosion, dilatation, . . .) of various scales r and compute the area
A(r) of the signal intensity surface at scale r. The FD is obtained
by the slope of the best fitting line at the points (log(r), log(A(r))).
In this methods class, three algorithms are the most used:

4.3.1. Isarithm method (IM)
The idea of the isarithm method (Shelberg et al., 1983) is to de-

fine the complexity of isarithm or contour lines, needed to approx-
imate the complexity of a surface. This method is only defined for
the 2D case. A series of isarithms (e.g., contours) based on the data
values are formed on the image. The FD of each isarithm can be
estimated with the walking divider method and the FD of the im-
age is the average FD of the isarithms plus one.

Shelberg et al. (1983) showed that the method can be used to
estimate the FD for the non self-similar surfaces. It is an important
key, because others methods, like BCM, are only appropriate for
self-similar surfaces. Furthermore, the method was found to be ro-
bust to random noise (Qiu et al., 1999).

However, Lam and De Cola (2002) noted that real data are
generally anisotropic and therefore the computed FD will vary
depending on whether it is measured along rows, columns, or
in a non-cardinal direction. Moreover, conflicting results on
the performance of the isarithm method have been reported.
Lam et al. (1997) found that the isarithm method performed
well in returning FD values close to those of true surface
dimensions, whereas Klinkenberg and Goodchild (1992) found
results with this method to be poor. Clarke (1986) criticized
the isarithm method because the resulting dimension was
likely to depend on the values of the isarithms and isarithm
interval.

4.3.2. Blanket method (BM)
The blanket algorithm was originally devised by Peleg et al.

(1984) in order to calculate the area of a gray level surface and thus
the FD of a 3D structure. The algorithm is based upon Mandelbrot’s
method and ultimately upon Minkowski’s sausage logic. In the
algorithm, Peleg et al. considered all the points in 3D space at a dis-
tance e from the surface, covering the surface with a ‘‘blanket” of
thickness 2e. This blanket is defined by two surfaces, an upper sur-
face and a lower surface (defined by dilatation and erosion of the
image).

One of the advantages of the method is it robustness against
gray levels changes. Another benefit is that the use of asymmetric
structuring elements allowed the identification of anisotropic
structures within the image (Chappard et al., 2001).
Asvestas et al. (1998) showed that the BM is efficient only when
the theoretical value of the FD is relatively low. Experiments were
done one noise free and noised data. For the first case, the method
underestimated the high FD and for the second case, it underesti-
mated the low FD.

4.3.3. Triangular prism method (TPM)
The triangular prism method compares the surface areas of tri-

angular prisms with the pixels area (step size squared) in log–log
form (Clarke, 1986). The method derives a relationship between
the surface area of triangular prisms defined by the grey-level val-
ues of the image and the step size of the grid used to measure the
prism surface area.

(De Jong and Burrough, 1995) reported that TPM method under-
estimates the FD. An improvement, introduced by Qiu et al., 1999
allowed to the algorithm to correct this error.

Moreover the TPM was also found to be sensitive to noise or ex-
treme grey-level values. However, beyond these limits, the method
is the fastest and gives more accurate results than the BM and IM
methods (Kolibal and Monde, 1998). The accuracy and efficiency of
the three methods were evaluated on images from the Cantor set.

In 2006 Sun (2006) proposed three new methods to compute
the fractal dimension based on Clarke’s TPM method, called the
max-difference method, the mean-difference method and the
eight-pixel method. The proposed methods have been tested using
both simulated fractal surfaces and real images. Results showed
that the methods are more robust than the Clarke’s method for
synthetic images with complex textures.
5. Multifractal analysis

Multifractals could be seen as an extension of fractals. A multi-
fractal object is more complex in the sense that it is always invari-
ant by translation, although the dilatation factor needed to be able
to distinguish the detail from the whole object depends on the de-
tail being observed.

Multifractal analysis initially appeared with multiplicatives cas-
cades models of Mandelbrot for the study of energy dissipation in
the context of the fully developed turbulence then it was applied
for the measurement of the turbulent flow velocity in the 1980s.
In this latter situation, the velocity has a very complex structure;
in particular, irregular behaviour occurs at ‘‘infrequent” places in
the sense of a Lebesgue measurement in R3. A signal treatment ap-
proach has been then developed which consisted to study the reg-
ularity of a signal with a velocity v. The aim is to define in each
signal point x0 the velocity variation law to deduce the punctual
Hölder exponent h(x0).

Afterwards points with the same exponent h are grouped to-
gether into sets Sh. These sets might have a null Lebesgue measure.
However if they are not significant in measure term, their topolog-
ical dimension can be. Thus, physicists searched to compute the
Hausdorff dimension Dh of Sh. The function h ? Dh was called the
singularity spectrum.

The direct determination by numerical computing of the singu-
larity spectrum of a real signal proves to be difficult because the
number of definitions to compute it is infinite. A formula, named
‘‘multifractal formalism” has been established by Parisi and Frisch
in order to compute this spectrum. The multifractal formalism was
then defined by:

DðhÞ ¼ inf
q
ðq � h� sðqÞ þ cÞ ð5Þ

where q is a real, c is a constant and s(q) is called the partition
function.

This formula is still difficult to apply for real signals, for this rea-
son the topic of many works was the implementation of methods



638 R. Lopes, N. Betrouni / Medical Image Analysis 13 (2009) 634–649
to evaluate the generalized multifractal dimensions spectrum Dq,
q 2 R. The parameter q serves as a ‘‘microscope” for exploring dif-
ferent regions of the singular measurement. For q > 1, Dq repre-
sents the more singular regions, for q < 1, it accentuates the less
singular regions and for q = 1, it represents the information
dimension.

However, an alternative description can be formulated. Indeed,
a multifractal structure can be considered as a superposition of
homogeneous monofractal structures. Let us consider the set E(h)
of Hölder exponents h of particles with values in the interval
[h, h + Dh]. F(h) is defined as the FD of the set E(h), which has a
monofractal structure. The pairs (q, s(q)) and (h, F(h)) are linked
by the Legendre transform:

sðqÞ ¼ q � hðqÞ � FðhÞ

hðqÞ ffi aðqÞ ¼ dsðqÞ
dq

ð6Þ

where a is an approximation of the Hölder coefficient h.
For a multifractal structure, the dimensions Dq are decreasing

functions of q, and h ? F(h) is a convex function whose maximum
corresponds to the Hausdorff dimension Dh.

6. Multifractal spectrum computing methods

As for FD estimation, many methods exist to approximate the
multifractal spectrum. We divided this description into two clas-
ses: first the methods said box-counting and the methods based
on wavelets.

6.1. Box-counting methods

The methods of this class are based on the same principles than
the methods for FD evaluation in Section 4.1. The signal is meshed
with various boxes size r and a normalized measure is computed in
each box.

6.1.1. Generalized fractal dimensions and multifractal spectrum
Standard box-counting techniques are used to analyse point’s

sets. Each set is described by an infinite number of generalized
dimensions, Dq, also called ‘‘Renyi’s dimensions” (Renyi, 1955),
and by the multifractal spectrum f(a) (Halsey et al., 1986). The gen-
eralized dimensions Dq are computed as a function of the order of
the probability moment q and then the multifractal spectrum can
be obtained by Legendre transform.

The Legendre transform could lead to some errors (Veneziano
et al., 1995). In 1989, Chhabra and Jensen defined a method for
the direct estimation of the multifractal spectrum (Chhabra and
Jensen, 1989). This method is widely used (Cuevas, 2003; Perrier
et al., 2006; Wang et al., 2005).

These methods have the drawbacks of the box-counting meth-
ods but several computational refinements were reported (Block
et al., 1990; Hou et al., 1990; Molteno, 1993).

Besides problems arising when the boxes contain few points,
the algorithms are characterized by low statistics, emphasized by
the negative exponents (q < 0); this, in turn, makes the measure
to diverge exponentially (Feeny, 2000).

6.1.2. The ‘‘sand box” or cumulative mass method
The sandbox method, introduced by Tél et al. (1989) and devel-

oped by Vicsek (1990), is useful for the assessment of the general-
ized fractal dimensions for both positive and negative moment
orders, q, permitting the reconstruction of the complete multifrac-
tal spectrum.

This method consists in randomly selecting N points belonging
to the structure and then counting, for each point i, the number of
pixels Mi(r) that belong to the structure inside a disk of diameter r
centred at this point. The generalized dimensions Dq are obtained
using the mean of M(r) for various r.

The advantage of this method is that the boxes are centred on
the structure, so there are no boxes with too few elements (i.e. pix-
els) inside. Indeed, for q < 0, boxes that contain a small number of
elements (because they barely overlap with the cluster) give
anomalously large contributions.

The sandbox procedure represents a solution to the border ef-
fect problem (i.e. the presence of almost empty cells containing
few points not centred in them), permitting the reconstruction of
the multifractal spectrum also for negative q (De Bartolo et al.,
2004).

Finally, we can quote that this method has just been developed
for binarized signals.

6.1.3. The large-deviation multifractal spectrum
When the multifractal spectrum is estimated using the above-

mentioned methods, its shape is always concave. The advantage
of the large-deviation multifractal spectrum is that it will not al-
ways be concave and so less information loss will occur. However,
much more numerical computation is required and the method be-
comes difficult to apply in 2D and 3D. Indeed, the algorithm neces-
sitates the calculation of two limits, instead of just one as for the
two previous methods.

In view of the high computation cost, this method is primarily
used for 1D signals (Broniatowski and Mignot, 2001; Touchette
and Beck, 2005). This spectrum can also be applied to image seg-
mentation (Abadi and Grandchamp, 2006).

6.2. Wavelet methods

The second class of methods are based on the wavelet trans-
form. The wavelet transform of a signal is used like an ‘‘oscillating”
box to represent its components. Therefore there is no need to
mesh the signal.

Some methods use the discrete wavelet transform and others
are based on the continuous wavelet transform.

6.2.1. Methods based on the discrete wavelet transform
The properties of multifractal formalism (based on discrete

wavelet coefficients) were established by Jaffard (1997). This tech-
nique is founded upon result of Meyer (1998) showing that under
mild regularity conditions on the paths of the process x(t), the local
Hölder exponent can be computed from size estimates of the
wavelet coefficients Wj,k:

aðt0Þ ¼ lim
k2�j!t0

�1
j

log2jWj;kj ð7Þ

where k2�j ? t0 means that t0 belongs to [2�jk, 2�j(k + 1)] as j ?1.
As with any working framework, multifractal formalism has a

number of limitations. Firstly, q negative order exponents are
meaningless. Indeed, there is no reason why discrete wavelet coef-
ficients should be non-zero, and in practice they can have values
very close to zero. Secondly, this formalism fails for signals which
contain oscillating singularities (Meyer, 1998). Such oscillating sin-
gularities are shown to appear generically in local self-similar
functions which are invariant under a nonhyperbolic mapping
(Arneodo et al., 1995).

6.2.2. The wavelet transform modulus maxima (WTMM) method
This method is also based on the concept of wavelets in general

and the use of the continuous wavelet transform in particular. It has
been developed and used in one and two dimensions in several
works (Bhatti et al., 2007; Enescu et al., 2006; Khalil et al., 2006;
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Klapetek and Ohlidal, 2005). The method is more numerically stable
than other methods for 1D and 2D dimensional multifractal spec-
trum calculation (such as the use of fractional Brownian motions,
for example (Brodu, 2005). In (Kestener and Arneodo, 2003), the
method was applied in 3D and the authors showed its robustness
using simulated 3D multifractal models. The algorithm is based
on the construction of wavelet transform modulus maxima chains.

The method presents some limits. It is more difficult to imple-
ment than the previous methods. It has some freedom degrees, like
the wavelet choice and the scales number. However Kestener and
Arneodo (2003) showed that it is more effective than the ‘‘box-
counting” methods.

6.2.3. The wavelet leaders method
This method is a recent technique. It is based on the definition

of wavelet leaders obtained by the discrete wavelet transform.
Although there is no study showing its effectiveness, it presents

some benefits. Indeed, the estimated multifractal formalism has a
mathematical validity and the right part of spectrum is valid
(q < 0), meaning that the partition function (obtained by wavelet
leaders) is also valid when q < 0. This formalism was theoretically
proven by Jaffard et al. (2005) and then developed in 1D by Lasher-
mes et al. (2005) for applications in fully developed turbulence.

7. Applications

Over the last years, fractal and multifractal analysis have been
applied extensively in medical signals analysis. In this section,
we classify and summarize these applications in many clinical pro-
cedures where 1D, 2D and 3D signals were involved.

Applications are grouped into the two main recurrent classes
namely segmentation and characterization.

7.1. Segmentation

In many clinical applications, image segmentation is an impor-
tant task which depends strongly on the signatures used to charac-
terize a given region of the image. These signatures can be of
several types; for example, one can characterize the pixels distri-
bution heterogeneity of a region of the image. Multifractal models
enable to describe the scale-to-scale propagation of this heteroge-
neity (Martinez et al., 1997).

Texture segmentation methods using the fractal and multifrac-
tal geometry can be divided into two classes:

– Methods based only on fractal and/or multifractal features.
– Methods that combine fractal and/or multifractal features with

other texture features.

Fractal analysis can be used alone in texture segmentation. Kel-
ler et al. (1989) were the first to propose a method for texture seg-
mentation using fractal geometry. Subsequently, a number of
works (Hsu et al., 2007; Kikuchi et al., 2005; Zhuang and Meng,
2004) examined several fractal parameters.

Other methods were motivated by the use of some fractal
geometry derived features, such as lacunarity and signatures (Dub-
uisson and Dubes, 1994). In fact, Espinal and Chandran (1998)
demonstrated that a wavelet-based fractal signature was a very
accurate and robust method for grey-scale texture classification
and segmentation.

Kaplan (1999) introduced multiscale Hurst parameters for the
characterization of various natural textures. The precision of this
algorithm was notably assessed on mosaic texture images.

Ida and Sambonsugi (1998) applied fractal coding for image
segmentation. The encoding method was the same as in the con-
ventional fractal coding method. An image can be segmented by
calculating bases on a dynamic system parameterized by fractal
coding. The authors showed that the method was able to segment
regions that have fine, clustered pixel patterns.

Lastly, the local FD was used with success to segment textures.
The local FD is either computed for each pixel in the image or in
local windows (Maeda et al., 1998). For instance, Novianto et al.
(2003) presented an algorithm based on 3 � 3 windows.

In the second class of methods, fractal analysis is combined
with other texture parameters like the Fourier spectrum, first
and second-order statistics (the co-occurrence matrix), . . . (Guo
et al., 2007).

Lee et al. (2005) developed an unsupervised segmentation algo-
rithm for ultrasonic liver images based on the multiresolution frac-
tal feature vector.

One drawback of these methods is that they require classifica-
tion (clustering); it is thus important to estimate the number of
textures present in the image. In most cases, this estimation is dif-
ficult or even impossible to perform.

In some cases, fractal analysis does not perform correct image
segmentation. Indeed, some images are complex to study because
they present irregularities and more regular zones at all scales,
without following a clear law. To recover information from such
singular images, multifractal formalism suggests studying the
way in which the image’s singularities are distributed, i.e. the sin-
gularity spectrum, equivalent to the entropy. Thus, a number of re-
cent studies have focused on texture segmentation using
multifractal analysis (Abadi and Grandchamp, 2006; Xia et al.,
2006) with application to MR and US images (Ezekiel, 2003).

Zhuang and Meng (2004) segmented ultrasound images using
the local FD (Fig. 2). Lévy-Véhel et al. (1992) segmented MR images
using a generalization of Chhabra’s method and the results were
conclusive (Fig. 3).

Xia et al. (2006) presented a novel multifractal estimation
algorithm based on mathematical morphology and a set of new
multifractal descriptors, namely the local morphological multi-
fractal exponents. The latter are used to characterize the local
scaling properties of the texture. Both the proposed algorithm
and the box-counting based methods have been applied to the
segmentation of texture mosaics and real images. Comparison
of the results showed that morphological multifractal estimation
can differentiate texture images more efficiently and provide
more robust segmentations than do the box-counting based
methods.

Brief summary: Image segmentation is a key step in many med-
ical imaging based procedures. Many research groups worked to
solve specific medical image segmentation problems, with good re-
sults (Duncan and Ayache, 2000; Pham et al., 1999); however, until
now, the generalization of these systems to a wider range of appli-
cations has not been successful. For this reason, research groups
still work on this application.

Fractal features are used, in this field, as additional texture
parameters. Indeed, the FD showed interesting results in some im-
age modalities like MR, CT and US. However, considered alone, it
cannot provide a precise method of segmentation, since it is calcu-
lated on windows of the image.

In conclusion, the FD can be introduced as a feature in a classi-
fication algorithm. For example, it can add information in statisti-
cal-model-based algorithms.

From another side, multifractal analysis seems more adapted
than the FD to the texture segmentation. Its advantage is to
characterize the local scales properties in addition to the global
properties. So it makes it possible to quantify the distribution
of the local singularities (local morphological multifractal
exponents).



Fig. 2. Ultrasound image segmentation (a) the original image, (b) a local fractal dimension map and (c) the segmentation result (Zhuang and Meng, 2004).

Fig. 3. MR image of the eye and the corresponding segmentation (Lévy-Véhel et al. (1992)).
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7.2. Characterization

Fractal and multifractal analyses have been used to study and to
characterize a wide range of signals in biology and medicine (Ken-
kel and Walker, 1996; Landini and Rippin, 1996; Oczeretko et al.,
2001). In this section, we limit our review to four main fields of
application:

– electrocardiogram (ECG) and electroencephalogram (EEG)
signals,

– brain imaging,
– mammography, and
– bone imaging.

In each field, applications in control group versus patient group
characterization and abnormalities detection will be highlighted.

Before detailing the above applications, we discuss some other
applications. Indeed, fractal geometry was used to characterize
and quantify the response for cancer treatment (Imre and Bogaert,
2004; Jain et al., 2002; Wax et al., 2003). It was also used to de-
scribe spectral data used to study blood flow in the lungs (Glenny
and Robertson, 1991), where the heterogeneity of pulmonary
blood flow is not adequately described by gravitational forces
alone. Krenz et al. (1992) used a fractal analysis to correlate the
morphometric data from the intrapulmonary arteries with func-
tional measurements of blood flow, in order to represent the hae-
modynamic consequences of the pulmonary arterial tree structure.
The basis of myocardial flow heterogeneities (Bassingthwaighte
et al., 1990) can be described by a natural fractal. There is also a
fractal analysis of radiographs of the peridental alveolar bone (Rut-
timan et al., 1992).
Spine neurons have been described in terms of FD. Keough et al.
(1991) used fractal analysis to study electron micrographs of dif-
ferent cell types by using micrographs obtained at various magni-
fications and subsequently enlarged by different amounts. Cross
et al. (1993) used a fractal analysis of renal angiograms to study
the morphological complexity of the renal arterial tree and also
(Cross et al., 1994) histological sections from molar and non-molar
pregnancies and partial hydatidiform moles to determine whether
the FD was discriminating between-groups.

Lastly, Stosic and Stosic (2006) showed that the vascular
structures of human retina represented geometrical multifractals
characterized by a hierarchy of exponents, rather than a single
FD.

7.2.1. 1D EEG/ECG signals
Fractal analysis applied to medical signals is an active field of

research. Indeed, some signals have a fractal character; this is par-
ticularly the case for repeated sequences, like palindromes (local
repetitions) and homologies between two different nucleotide se-
quences (motifs along the genome) composing a self-similar (frac-
tal) pattern in mitochondrial DNA (Oiwa and Glazier, 2004).

The FD has also been used to characterize two states or to pre-
dict a phenomenon. It is usually applied to ECG and EEG signals
(Phothisonothai and Nakagawa, 2007; Smrcka et al., 2003) using
the box-counting method.

To model an EEG, the signal is considered as a series of sine and
cosine waves of constant amplitude (John and Bradford, 1993). In
order to distinguish the classes of time series (EEG), which corre-
late to brain activities, fractal analysis is often used.

Fractal interpolation can also be used for ECG data compression
(Jun et al., 1994).
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FD can also be used as a method for discriminating between two
states (Esteller et al., 2004; Li et al., 2005; Spasic et al., 2005).

Anderson et al. (1997) showed that the FD can be predictive for
arrhythmic (but not non-arrhythmic) death in a large post-infarc-
tion cohort. Pereda et al. (1998) found in their study on human EEG
(awake and sleep stages of the patient) that EEG exhibits random
fractal structure with 1/f�b spectrum, where the b exponent was
between 1 and 3. More than the correlation dimension (D2), b
exponent is appropriate to correlate with the behaviour of EEG
waves. Murali (2005) showed that FD was more sensitive than Fou-
rier transform for applications in the prediction. Woyshville and
Calabrese (1994) used fractal dimension in their studies on quan-
tification of occipital EEG with respect to the Alzheimer disease
for the three conditions defined as (1) controls, (2) probable Alz-
heimer disease and (3) autopsy-confirmed Alzheimer disease. They
concluded that fractal dimensions clearly describe the EEG pathol-
ogy and suggested that they have a potential clinical utility.

Recently, Hsu et al. (2007) presented a new electroencephalo-
gram (EEG) analysis system using active segment selection and
multiresolution fractal features (notably the differential box-
counting method).

Multifractal algorithms have also been used (Li et al., 2005; Mu-
noz et al., 2005; Xia et al., 2006; Yum and Kim, 2002). The principal
application is discrimination between two states (Munoz et al.,
2005; Wang et al., 2006). Wang et al. (2007) showed that the area
value of the ventricular fibrillation singularity spectrum (VF)
tended to be higher than the area value of the ventricular tachycar-
dia singularity spectrum (VT), by using the direct determination
method for the singularity spectrum f(a). This latter study is partic-
ularly interesting because it demonstrates the effectiveness of
multifractal analysis comparing to other methods. Indeed, con-
cerning VF and VT classification, several quantitative analysis tech-
niques have been suggested, such as a sequential hypothesis
testing algorithm (Thakor et al., 1990), a method based on com-
plexity measurement (Zhang et al., 1999), a qualitative chaos anal-
ysis based on symbolic complexity (Zhang et al., 2002), the
correlation dimension method (Small et al., 2002), the Lyapunov
exponent method (Owis et al., 2002), and the entropy approxima-
tion method (Caswell Schuckers, 1998). However, none of these
methods was able to distinguish VF from VT.

The generalized fractal dimensions have been used by Kulish
et al. (2006) to show that these dimensions contain information re-
lated to both frequency and amplitude characteristics of the EEG
signals.

Multifractal analysis can also be used to show the monofractal
or multifractal nature of medical signals (Yum and Kim, 2002). In
this case, the WTMM method is the most appropriate because it
is the most numerically stable (Arneodo et al., 1998). The method
provided good results with EEG signals (Popivanov et al., 2005;
Shimizu et al., 2004).

Brief summary: The FD clearly has an advantage in the study of
EEG signals, since these signals exhibited random fractal structure.
As reported in this section, in a large number of applications (epi-
lepsy, sleeping disorder, Alzheimer disease), FD showed its useful-
ness. Several methods for FD calculation are used and, even the
methods with many limits like the ‘‘box-counting” methods, pro-
vided satisfactory results. Until now, there is no comparative study
of the methods to highlight to most effective one for these signals.
However, the FD clearly showed its advantage compared to other
methods, like the Fourier transform. Recently, many reports on
fractal dimension and fractal spectra analysis predicted the brain
activities more precisely than Fourier transform. Even fractal spec-
tra analysis has limitations in analysing stationary brain waves,
multiple brain activities, . . .

Multifractal analysis is also used successfully in various applica-
tions concerning the use of EEG signals. A numerically stable meth-
od (WTMM method) showed monofractal and multifractal
characters of signals and provided good performances in the clas-
sification of two states. Thus, this method will continue to be an
important area of research in study of EEG signals.

7.2.2. Brain imaging
Fractal dimension is the most frequently applied features in this

field of application. One important early observation was that FD is
not discriminative on MR brain images. Indeed, whole brain
images from healthy subjects and patients have similar FD values
(Cook et al., 1995; Free et al., 1996). In the first work, FD was com-
puted using the box-counting method and in the second, it was
computed for the contours of the brain using the morphological
operator method. However, FDs were successfully used to quantify
cells morphologies in the brain (Kalmanti and Maris, 2007; Smith
et al., 1993; Smith and Behar, 1994; Soltys et al., 2001) and the
brain shape (Blanton et al., 2001; Gorski and Skrzat, 2006; Iftekha-
ruddin et al., 2000; Kedzia et al., 2002; Pereira et al., 2000; Rybac-
zuk et al., 1996; Thompson et al., 1996).

Some works were carried on the grey matter (GM) (Blanton
et al., 2001; Liu et al., 2003; Sato et al., 1996; Sisodiya and Free,
1997), others focused on the white matter (Free et al., 1996; Liu
et al., 2003; Shan et al., 2006).

Using MR images of the human brain, Bullmore et al. (1994)
measured the boundary between the cerebral cortex and white
matter, with application to the characterization of schizophrenics,
manic-depressives and controls. The mean FD (computed by the
box-counting method) was greater in boundaries extracted from
manic-depressive patients than in those extracted from controls,
whereas it was lower in schizophrenics than in controls. It was
suggested that the FD is a useful measure of clinically relevant dif-
ferences in the complexity of MRI boundaries.

Blanton et al. (2001) examined the influence of age and gender
on the structural complexity and asymmetry of primary cortical
sulci in normally developing children by computing the FD for
the contour surface between the sulcus and the gyrus on brain
MR images. The method was based on the algorithm presented
by Thompson et al. (1996).

Kedzia et al. (2002) studied the microarchitecture of foetal brain
blood vessels during pregnancy; they showed that the mean FD
(computed by the box-counting method) was 1.26 during the
fourth month, increased to 1.53 during the fifth month and then
grew even more rapidly until the sixth and seventh months. This
suggested an increased level of complexity and feed volume in
the brain.

Liu et al. (2003) skeletonized the human cerebellum and
showed that it has a highly fractal structure, with a FD (computed
using the box-counting method) of 2.57. There were no significant
differences between men and women in terms of the cerebellum
FD.

Zhang et al., 2006 were the first to introduce a method to
compute the 3D FD of three features of the human’s brain: white
matter, the interior structure, the surface (i.e. the interface be-
tween GM and WM) and the overall structure (the whole WM
voxel set). The structural complexity of the WM declined with
age in all anatomical structures analysed (whole brain and hemi-
spheres). Age-related asymmetrical changes were found in the
WM’s interior structure: the complexity of the WM’s interior
structure decreased in the left hemisphere in men and in the
right hemisphere in women. White matter structures in men
were more complex (i.e. they had a higher FD) than in women.
Lastly, an asymmetric complexity pattern (right side greater than
left side) was observed for the WM interior and general struc-
tures, whereas the complexity of the WM surface was symmetri-
cal. No significant age-related WM volume reductions were
observed.
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Fractal analysis has also been used for brain tumor detection
(Iftekharuddin et al., 2003; Mansury and Deisboeck, 2004; Penn
et al., 1999). Iftekharuddin et al. (2000) used the FD value to detect
and locate brain tumors. The FD was computed using the fBf vari-
ance model method and used to extract information on tumor pro-
gression relative to normal brain data. Zook and Iftekharuddin
(2005) presented an algorithm for brain tumor detection on 2D
MR images. The principle was as follows: the FD of the left half
of the brain was compared with that of the right half (assuming
that the tumor is located in one half only). The authors found that
the FD of tumor regions is usually lower than that of non-tumor
regions. The authors also compared the efficiency of different
methods of FD computation (piecewise modified box counting
(PMBC) – piecewise triangular prism surface-area method (PTPSA)
– blanket algorithm). Some of results are presented in Fig. 4. PMBC
method detected the tumor inner as high FD in a 32 � 32
neighbourhood, while PMBC detected tumor edges as high FD in
a 64 � 64 neighbourhood (Fig. 4b and c). For the same image,
PTPSA detected the tumor as slightly higher FD and blanket algo-
rithm detected part of the tumor as higher FD (Fig. 4d and e). Spe-
cifically, in this study, the PTPSA algorithm was more predictive at
lower resolutions and the blanket algorithm was more predictive
at higher resolutions. Furthermore, in a 8 � 8 neighbourhood, the
PTPSA algorithm offered the best tumor detection performance.

Moreover, results concerning the 3D fractal analysis used in
brain single photon emission computed tomography (SPECT) for
the characterization of Alzheimer’s disease were presented (Nagao
and Murase, 2002; Takahashi et al., 2006; Yoshikawa et al., 2003).
The FD is estimated by a method which lacks a true theoretical ba-
sis, a generalization of the box-counting method. Indeed, this
method was refuted by (Chung, 2003) because the FDs obtained
were between 1 and 2, whereas they should be between 3 and 4.
In another study, (Lopes et al., 2007a) used a 3D adaptation of
the differential box-counting method to derive the 3D FD and ap-
plied it for the characterization of epilepsy in SPECT imaging.

There are fewer published works on multifractal analysis.
Takahashi et al. (2006) used the Chhabra spectrum to quantita-
tively evaluate white matter hyperintensity. Lopes et al. (2008)
used a 3D adaptation of Chhabra’s method to characterize the local
changes in homogeneity in brain SPECT images. There was a statis-
tically significant difference between the control group and the
pathological group.

Brief summary: The studies are mainly done on brain magnetic
resonance imaging (MRI). The use of FD on the brain MRI required
a special attention, since two studies showed that the FD did not
make it possible statistically to separate the healthy subjects and
the patients. However this remark can be discussed, for example
the first study used the box-counting method, therefore there
was a binarization in pre-processing and this step could remove
Fig. 4. (a) A T1 MR image with contrast agent. Also shown are positive FD difference res
Iftekharuddin, 2005).
important information. Then there have been only a few fractal
studies on non-linear structures observed by brain magnetic reso-
nance imaging, and the contents of these studies have been mostly
limited to extraction of fractal structures (white matter surface,
cortical/subcortical boundary). However the FD proved to be a dis-
criminating tool for some structures.

The FD has also been used for brain tumor detection with lim-
ited results. Indeed the information brought by the FD was inter-
esting, but it would be necessary to add other information for a
better segmentation. Thus, the FD can be used like an additional
feature in segmentation algorithms.

Finally first works concerning the use of the multifractal analy-
sis were interesting, but they used ‘‘box-counting” methods, it will
be interesting to see the influence of a wavelet-based method.

7.2.3. Bone trabeculation
It was already well known that both trabecular bone density

and structure affect overall bone quality and strength (Cooper,
1993; Dempster et al., 1993; Ott, 1986; Uitewaal et al., 1987). In-
deed in biomechanical terms, fracture risk for an osteoporotic is
determined by the combination of factors inherent to the bone
quality (e.g. cortical thickness, mineral contents, trabecular bone
density and microarchitecture). One of the most important factors
contributing to bone strength is its complex structure. Bone has
two components: an outer part consisting of a tube of very dense
material and an inside that looks like a sea sponge, filled with fi-
nely interlaced struts, called trabeculae, which are about as wide
as a human hair.

The first computerized analysis for trabecular architecture
quantification was done by the use of morphological measures.
These measures showed moderate to good relationship with Bone
Mineral Density (BMD) (Link et al., 1997; Ouyang et al., 1998), but
not many of the measures significantly complement BMD to the
prediction of biomechanical properties. The idea has also been
to use measures of second-order statistics, especially the fractal
analysis. Many studies were done to validate the use of fractal
analysis in this application. The early studies were concerned with
establishing methodology or determining if cancellous bone is in-
deed fractal in nature. One of the properties of theoretical fractal
shapes is that they have an indeterminate perimeter. Cancellous
bone has been showed to have this property (Parkinson and Faz-
zalari, 1994). Specially, if the perimeter and area of a histological
section of cancellous bone is measured at increasingly higher
magnification, the measured perimeter will increase but the mea-
sured area will remain relatively constant. A second property of
the fractal geometry is the self-similarity (in the statistically
sense) of objects. Benhamou et al. (1994) proved the self-similar-
ity of the trabecular bone microarchitecture on calcaneus
radiographs.
ults for (b) PMBC-32, (c) PMBC-64, (d) PTPSA and (e) the blanket method (Zook and
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Many studies were done by comparing control group and pa-
tients group to show that the FD is a discriminative measure.
Caligiuri et al. (1994) presented an analysis of lumbar spine radio-
graphs. The authors used a surface-area technique to calculate the
fractal dimension of radiographs, and have shown what appears to
be a promising discrimination between subjects with and subjects
without fractures. Khosrovi et al. (1994) showed differences be-
tween normal and osteoporotic women using fractal measures de-
rived from wrist radiographs. Benhamou et al. (1994) showed that
fractal measures derived from calcaneus radiographs may also be
potentially useful in studying osteoporotic populations.

In 1999, a study by Majumdar et al. (1999) showed others
important characteristics using fractal analysis in this application.
They used three methods to compute the FD: a surface-area tech-
nique, a semi-variance technique and a Fourier transform tech-
nique. As it was stressed in Section 4, many methods exist to
evaluate the FD, but with different results. The authors used three
methods and their first result was that there was a correlation be-
tween the fractal dimensions of the three methods and the micro-
architectural measures of trabecular structure. The second result
was that the semi-variance and Fourier transform techniques
showed differences between the trabecular orientation in the ver-
tebrae and the other planes, while the surface-area technique did
not discriminate between the planes. This result can be explained
by the fact that the semi-variance and Fourier transform tech-
niques are based on a stochastic formulation, while the surface-
area technique is based on a deterministic theory. Thus, the simi-
larity between the semi-variance and the Fourier transform results
and the discrepancy between the surface-area based results is not
unexpected. The important message in this paper was that differ-
ent fractal techniques provided different results. These measures
can adequately be exploited to provide different kinds of informa-
tion pertaining to bone strength and structure.

In the recent years, research on bone trabeculation through
fractal analysis has remained very dynamic (Messent et al., 2005;
Papaloucas et al., 2005; Wilkie et al., 2004; Yasar and Akgunlu,
2006). Many studies concerned bone trabeculation anisotropy. Yi
et al. (2007) measured bone trabeculation anisotropy using direc-
tional FDs (calculated as a function of orientation and which
yielded the fractal information reflecting the spatial characteristics
of the trabecular bone in each direction). They found that the
anisotropy was significantly higher in the angle region of the man-
dible than in the incisor region. (Jennane et al., 2006) estimated the
anisotropy degree of fractal on bone X-ray images, known to be
complex in terms of their non-stationarity, anisotropy and tex-
tured character. They demonstrated that the bone organization
was more anisotropic for osteoporotic subjects than for healthy
controls, in accordance with the natural osteoporosis-related
changes in bone tissue. The authors computed the FD using the
variogram method. Later on, it will be shown that the use of this
method presents the following limitation: more the structure is
complex, more the FD increases. However the method is unstable
for surfaces of higher dimensions (Lam et al., 2002).

Finally and always in the healthy control/patient classification
applications, Taleb-Ahmed et al. (2003) suggested a way to charac-
terize bone texture in CT images, with a view to discriminating be-
tween healthy and pathological subjects. In other studies
(Dougherty, 2001; Dougherty and Henebry, 2001), lacunarity
parameters were combined with the fractal signature to improve
the healthy control/patient classification.

Brief summary: During the past decades, there has been contin-
uous investigation into the use of fractal analysis in bone trabecu-
lation applications. Several applications have been studied as the
fractal character of the trabecular bone. This property, revealed
in 1994 by Benhamou et al., made it possible to validate the use
of FD in these applications. From this, many studies have been car-
ried out, in particular the comparison between normal subjects
and diseased subjects, bone trabeculation anisotropy, etc.

Concerning the FD computing algorithms used, studies showed
that some methods allowed good performances whereas others did
not bring any information. This point confirms the previous asser-
tion, namely that the methods provide different results and
showed the importance of the method’s choice. In the applications
concerning the trabecular bone, the Fourier transform based meth-
od seemed to provide of the most stable results.

Finally there are not real applications of the multifractal analy-
sis for trabecular bone studies, which can be explained by the fact
that encouraging results have been obtained with FD. As we men-
tion it above, multifractal analysis adds local information about the
signal heterogeneity. In these applications, this information was
not fundamental, but just a global quantification of the signal
was necessary.

7.2.4. Mammography
Mammography is the principal tool for the detection and diag-

nosis of breast cancer. Clinical studies demonstrated that survival
is greatly improved if the breast anomalies are detected at early
stages (Tabar et al., 1993). One of the significant signs of possible
cancerous changes is the existence of small mineral deposits in
the breast tissue, usually referred as micro-calcifications (Suri
et al., 2002). Currently, mammography is the most effective tool
for detecting possible breast anomalies, including micro-calcifica-
tions. It consists of an X-ray radiographic examination of each
breast, usually from two angles (a top-to-bottom view and an ob-
lique view). Others imaging modalities (ultrasound, MR) can be
used but only as complementary examinations in the event of a
difficult diagnosis. However, micro-calcifications with small sizes
(typically up to a few of millimeters) and low contrast are difficult
to detect. Thus, by applying image processing algorithms, signifi-
cant improvements for the detection of micro-calcifications were
possible.

In particular, the application of fractal geometry showed inter-
esting results. There are many reports on the use of this geometry
in mammography images (Li et al., 2007; Nguyen and Rangayyan,
2005; Tanki et al., 2006).

In this field, the applicability of the fractal geometry is justified
by the fact that, micro-calcifications usually appear as a cluster of
bright spots with variant size and shape embedded in an inhomo-
geneous background of breast tissue. The inhomogeneous back-
ground also exhibits the self-similarity property of typical fractal
images such that a region of interest in digital mammograms con-
taining the micro-calcifications clusters can be viewed as a fractal
normal background superimposed by a non-fractal foreground (i.e.
the micro-calcifications clusters) (Huang and Yu, 2007; Kestener
et al., 2004).

For breast density measurements, Caldwell et al. (1990), Taylor
et al. (1994) and Byng et al. (1996) used various fractal indices to
classify the images into categories. In particular, Byng et al.
(1996) used a 3D box-counting method to calculate the surface
FD (x, y, I(x, y)) where I(x, y) is the grey-scale value at pixel (x, y).
The FD is estimated for the totality of the breast. The obtained
FD values are ranged between 2.23 (for a dense breast) and 2.54
(for a fatty breast), corresponding to Hurst exponent values of
0.77 and 0.46, respectively.

Kestener et al. (2004) showed that the multifractal spectrum
computed by the WTMM method allows discrimination between
fat and dense tissues. The authors found that dense and fat tissues
had Hurst exponent values of 0.65 and 0.3, respectively. This ap-
proach reached to similar results as those provided by Byng
et al., but the method used by Kestener et al. was more robust. In-
deed, Byng et al. used the box-counting method while Kestener
et al. used the WTMM method. Moreover the second study showed



Fig. 5. Micro-calcification detection in a mammography containing two malignant foci. (a) The original mammography: the white rectangle indicates the region of interest.
(b) and (c) show the maxima chains resulting from the maxima lines sorting procedure indicating the micro-calcifications for scaling parameter values of a = 1 and a = 4,
respectively (Kestener et al., 2004).
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that the breast texture on mammography had not multifractal
character.

Another application of fractal analysis concerned the enhance-
ment of micro-calcifications on mammograms was that of Li
et al. (1996). The authors showed that general mammographic
parenchymal and ductal patterns can be well modelled by the frac-
tal geometry. Therefore, micro-calcifications could be enhanced by
taking the difference between the original mammogram and the
modelled one. Their results were compared with those of the par-
tial wavelet reconstruction and morphological operation ap-
proaches. The result demonstrated that the fractal modelling
method is an effective way to enhance micro-calcifications and
thereby facilitates the radiologist’s diagnosis.

Fractal and multifractal analysis have also been used for benign/
malignant classification and micro-calcification detection. These
analyses were based on a number of features selected by radiolo-
gists (Lanyi, 1986; Veldkamp et al., 2000). Based on these features,
Mavroforakis et al. (2006) used the FD (calculated by the box-
counting method) as a texture characteristic for classification.
The results showed a breast micro-calcification detection rate of
about 83.9%. Rangayyan and Nguyen (2005) showed that FD com-
putation (using the grid method) for micro-calcification contours
enables classification of benign and malignant clusters. They also
showed the efficiency of FD relative to other shape factor methods
(compactness, the spiculation index, fractional concavity, Fourier
factor).

The study by Guillemet (1996) constituted an initial approach
to the application of multifractal analysis to micro-calcification
detection. The proposed multifractal algorithm was based on the
classic multifractal formalism for measurements (Lévy-Véhel,
1995; Lévy-Véhel and Vojak, 1995) and their numerical implemen-
tation used Chhabra’s method (Chhabra and Jensen, 1989). The key
point of this work consisted in finding a measurement deduced
from a micro-calcification-containing image and then applying
multifractal analysis to it in order to reveal the presence of mi-
cro-calcifications.

Using the generalized dimension spectrum Dq (Badii and Pol-
iti, 1984, 1985; Grassberger et al., 1988; Grassberger and Pro-
caccia, 1983) as a discriminating factor, a non-supervised
classification study showed a degree of specificity for the gener-
alized dimensions method in the presence of micro-
calcifications.

In 2004, a work by Kestener et al. (2004) reported good results
for micro-calcification classification. The authors used the 2D
WTMM method for texture classification in mammography via
Hurst exponent calculation. They performed dense/fatty segmen-
tation. Moreover, using the wavelet transform skeleton, they lo-
cated and characterized micro-calcifications (Arneodo et al.,
2003; Kestener et al., 2004) (Fig. 5).

More recently, (Stojic et al., 2006) used local multifractal
analysis (and Chhabra’s method in particular) to detect micro-
calcifications. However this method was dependent on the micro-
calcifications size. Moreover the authors used a ‘‘box-counting”
method to compute the f(a) spectrum, which presents some
drawbacks.

Brief summary: Fractal geometry has been intensively used in
mammography for the diagnosis of breast cancer. FD has been used
in studies of benign/malignant classifications and detection of mi-
cro-calcifications. With regard to the first application the FD could
be a discriminating tool, but it was really effective when it was
combined with other texture features. For the second application,
the FD is able to isolate micro-calcifications areas but it is not able
to segment them precisely. Precisely in this second application
multifractal analysis could be an interesting tool. Indeed the



Table 1
The main fractal and multifractal methods and medical image applications.

Methods Applications

Segmentation Characterization Others

EEG/ECG signals Brain images Bone texture Mammography

Fractal
Box counting Keller et al. (1989) Anderson et al.

(1997), Smrcka et al.
(2003) and
Phothisonothai and
Nakagawa (2007)

Smith et al. (1993),
Smith and Behar
(1994), Bullmore et al.
(1994), Cook et al.
(1995), Soltys et al.
(2001), Kedzia et al.
(2002), Liu et al. (2003),
Zhang et al. (2006),
Gorski and Skrzat
(2006) and Kalmanti
and Maris (2007)

Majumdar et al.
(1999), Wilkie et al.
(2004) and Yasar and
Akgunlu (2006)

Byng et al. (1996),
Nguyen and
Rangayyan (2005),
Mavroforakis et al.
(2006), Tanki et al.
(2006) and Li et al.
(2007)

Differential box
counting

Chaudhuri and
Sarkar (1995)

Yum and Kim (2002) Zook and Iftekharuddin
(2005) and Lopes et al.
(2007a)

Extended counting
method

Sandau and Kurz
(1997) and Chung
et al. (2002)

Triangular prisms
method

Zook and Iftekharuddin
(2005)

Oczeretko et al.
(2001) and Imre and
Bogaert (2004)

Covering blanket
method

Novianto et al.
(2003)

Zook and Iftekharuddin
(2005)

Variogram Iftekharuddin et al.
(2000)

Benhamou et al.
(1994) and Jennane
et al. (2006)

Power spectrum Caldwell et al. (1998),
Ouyang et al. (1998),
Lespessailles et al.
(1998) and Majumdar
et al. (1999)

Isarithm method Free et al. (1996) Rangayyan and
Nguyen (2005)

Multifractal
Renyi’s dimensions Xia et al. (2006) Yu et al. (2001) Guillemet (1996)
Direct determination

method of the f(a)
singularity
spectrum

Lévy-Véhel et al.
(1992)

Wang et al. (2006)
and Wang et al.
(2007)

Takahashi et al. (2006)
and Lopes et al. (2007b)

Stojic et al. (2006)

Sand box method Stosic and Stosic (2006)
Large-deviation

multif. Spect.
Discrete wavelet

transform
Li et al. (2005) and
Hsu et al. (2007)

The WTMM method Arneodo et al. (1998),
Shimizu et al. (2004)
and Popivanov et al.
(2005)

Kestener et al. (2004)

Wavelet leaders
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WTMM method is efficient in the detection of the micro-
calcifications.

8. Conclusion

Fractal geometry provides a powerful tool for the characteriza-
tion and segmentation in many medical imaging applications. The
applicability of this geometry in image analysis comes from the
fact that the imaged object are discontinuous, complex, and frag-
mented. The significance and the advantage of this geometry com-
pared to classic signal processing methods, lie in the way of how
the non-regularities are assumed.

Fractal analysis is often brought to the evaluation of the FD
which allows having a global description of the inhomogeneities
in the image. Its efficiency has been demonstrated in classification
and segmentation experiments where it was used as an additional
texture parameter. It has also been used alone for the characteriza-
tion of two states (e.g. healthy vs. pathological). Table 1 summa-
rizes the main methods and applications used in the medical
field. From this table, it appears that the box-counting method is
the most widely used, despite its drawbacks (binarization of the
signal, construction of empty boxes, grid effect, etc.). This general-
ization is easily understood because this method is easy to imple-
ment. Another explanation for the lack of interest in some methods
among biomedical researchers is that these methods were devel-
oped outside the biomedical domain.

Beyond its advantage, the multiplication of computation meth-
ods of FD does not go without drawbacks. Indeed, the computed
dimension could be affected by some parameters as the computa-
tion algorithm used and its parameters tuning. As result, it is diffi-
cult to know whether the observed differences in computed FD
values is a result of true differences in image texture or a result
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of certain arbitrary decisions made during the estimation process.
Therefore, the choice of a method is an important issue in the com-
putation of FD. In most applications cited in this study, no compar-
ative evaluation was done to determine the most suitable
algorithm for the considered data, which suggests that some re-
sults could be improved.

Another limitation with fractal analysis is to describe objects by
a single fractal value whereas they exhibit a multifractal behaviour.
Multifractal analysis is a response to this limit. It allows computing
a spectrum or a set of fractal dimensions. However, as above, many
algorithms exist to evaluate this spectrum and numerical differ-
ences between the methods appear.

As conclusion of this study, fractal geometry could be an effi-
cient tool to deal with some problems in image analysis as long
as two parameters are taken into consideration:

1. The dimensionality of images to choose fractal or multifractal
analysis.

2. The suitable algorithm: To make a comparative study of the
behaviour of the different methods on the data.
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