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Back to Incremental Convex Hull

P a set of n points in Rd

1 Sort P by lexicographic order
P = {p1, . . . , pn}

2 For i = 1, . . . n,
insert pi+1: conv(Pi ) −→ conv(Pi ∪ pi+1)



Back to Incremental Convex Hull

Pi = {p1, . . . , pi}
Updating conv(Pi ) into conv(Pi ∪ pi+1): a color story

Facet A facet f of conv(Pi ) with supporting hyperplan hf is:
– red iff conv(Pi ) and pi+1 are on differents side of hf .
– blue iff conv(Pi ) and pi+1 are on the same side of hf .

k-Faces with k < d − 1 of conv(Pi ) is:
– red iff it is the intersection of red facets
– blue iff it is the intersection of blue facets
– purple iff it is included in red and blue facets



Back to Incremental Convex Hull

Updating conv(Pi ) into conv(Pi ∪ pi+1) :

1 find a first red facets (there is one incident to pi )

2 find the set of red facets (they form a connected set)

3 delete red faces
install new faces = conv(e ∪ pi+1)
where e is a purple face of conv(Pi ).



Back to Incremental Convex Hull

Complexity
Sorting + the total number of created facets

O
(

n log n + Σn
i=1ib d−1

2 c
)

= O
(

n log n + nb d+1
2 c
)

Randomized incremental convex hull: O
(

n log n + nb d
2 c
)

Optimal convex hull: O
(

n log n + nb d
2 c
)



Back to Incremental Convex Hull

A bad case in 3D

The bad case arises with a special set of points
inserted in a special order.
Hence the idea of randomization.



Randomized Algorithms

What is a randomized algorithms

• A randomized algorithm computes the exact solution of a
deterministic problem

• The algorithm performs internal random choices.
that influence the algorithm’s behaviour but not the output.

• Analysis of the algorithm: expectation over the random choices.

Randomized incremental algorithms
random choices: random insertion order of the data

Randomized analysis of on line algorithms
• An on line algorithm handles data according to the given input order.
• Expected complexity with respect to a random input order.



The Formalism of Regions and Conflicts

Data : a finite set P of objects in O
Region - a subset of i < b objects that defines the region

- a subset of O in conflict with the region

Problem of interest build the set of regions defined by P
without conflict on P

Regions and Conflicts for the Convex hull
– objects are points in Rd

– regions are halfspaces of Rd

– each region is defined by d-points
– p in conflict with h+ iff p ∈ h+

facets of conv(P) =

 set of regions
defined by P
with no conflict on P



Randomized Incremental Construction

Notations
Let P be a finite set of objects.
F(P) the set of regions defined by objects in P
Fj(P) the set of regions defined by objects in P

in conflict with j objects in P.

Incremental construction of F0(P).
At each step:
- a new point p of P is added in a subset R ⊂ P
- the set F0(R) is updated.

Randomized hypothesis
The order of insertion of objects in P is random.
At each step r , R is a r -sample of P, i.e. a random subset with size r .



Randomized Incremental Construction
Expected number of constructed regions

R random subset of P with size r
f0(r) expected number of regions defined on R and without conflict on R
Theorem (First RIC theorem)
The expected total number of regions constructed by the RIC is:

O

(∑n
r=1

f0(r)
r

)
Proof.
probability for f ∈ F(P) to be in F0(R) : pf (r)
Probability for f ∈ F(P) to appear in F0(R) at step r : b

r pf (r)

f0(r) =
∑

f∈F(P)

pf (r)

Expected total number of regions
constructed by the RIC

=
∑

r

∑
f

b

r
pf (r) = O

(
n∑

r=1

f0(r)

r

)



Randomized Incremental Convex Hull
Expected number of constructed regions

In the convex hull case f0(r) = O(rb d
2 c)

Expected total number of regions
constructed by the convex hull RIC

= O

(
n∑

r=1

f0(r)

r

)
= O

(
nb d

2 c
)

This not the end of the story for the RIC of convex hulls:
since points are inserted in random order
we can no more rely on the lexicographic order

to find the first red facet at each insertion.



Randomized Incremental Convex hull
A first solution : the conflict graph

The conflict graph
A bipartite graph on P × F0(R):
∀p ∈ P \ R, an edge (p, f ) where f ∈ F0(R) conflicts with p.

Using conflict graph
conv(R) −→ conv(R∪ p)
- the conflict graph edge of p provides the first red facet.
- Find all the red facets by walking on facets of conv(R) in conflict with p
- Update the convex hull
- Update the conflict graph

for each q 6= p in P \ R, find a new conflict graph edge
by walking on facets of conv(R) conflicting with p and q



Randomized Incremental Convex hull
Updating the conflict graph

p

q

q

q

Update the conflict graph
Insertion of p : conv(R) −→ conv(R∪ p)
Let q ∈ P \ R, q 6= p.
Walk on the facets f of conv(R) in conflict with p and q
- if a neighbor g of f conflicts with q but not with p : edge(q,g)
- if a neighbor g of f conflicts neither with q nor f

f ′ neighbor of g in conv(R∪ p) s.t. g ∩ f = g ∩ f ′

edge (q, f ′) if q and f ′ conflict.
- if neither happens, discard q.



Randomized Incremental Constructions
Conflict graph complexity

Total complexity of convex hull
- Update of convex hulls : total number of constructed regions
- Finding conflicts + updating the conflict graphs :

total number of conflicts with constructed regions

Theorem (Second RIC theorem)
The expected total number of conflicts with constructed regions is:

O

(
n∑

r=1

n − r

r2
f0(r)

)

Expected complexity of convex hull RIC
f0(r) = O

(
rb d

2 c
)
, O

(∑
r

n−r
r2 f0(r)

)
= O

(
n log n + nb d

2 c
)



Proof of 2d RIC Theorem
Statistics on regions

R ⊂ P
Fj(P) the set of regions defined by P with j conflicts in P.
Fj(R) the set of regions defined by R ⊂ P with j conflicts in R.
fj(r) expected size of Fj(R).

R being a random sample
probability for f ∈ Fj(P)
to be in Fk(R)

pj,k(r) =

(
j
k

) (
n − b − j
r − b − k

)
(

n
r

)

fk(r) =
∑

j

|Fj(P)| pj,k(r)

f0(r) =
∑

j

|Fj(P)| pj(r)



Proof of 2d RIC Theorem
Moments

R ⊂ P
P(f ) set of objects in P in conflict with region f

Moment of order k of R with respect to P
mk(R,P) =

∑
f∈F0(R)

( |P(f )|
k

)
.

Expectation for a r -sample

mk(r) =
∑

f

( |P(f )|
k

)
proba(f ∈ F0(R)) =

∑
j |Fj(P)|

(
j
k

)
pj(r).

RIC and first order moment
Expected total number of conflicts with constructed regions∑

r

∑
j

|Fj(P)|
(

j
1

)
b

r
pj(r) =

∑
r

b
m1(r)

r



Proof of 2d RIC Theorem
Moments Theorem

Theorem (Moments theorem)

mk(R) ≤ fk(R)
(n − r + k)!

(n − r)!

(r − b − k)!

(r − b)!

Proof
mk(r) =

∑
j |Fj(P)|

(
j
k

) 0@ n − b − j
r − b

1A
0@ n

r

1A

fk(r) =

∑
j |Fj(P)|

0@ j
k

1A 0@ n − b − j
r − b − k

1A
0@ n

r

1A

First order moment : m1(r) = f1(r) n−r+1
r−b = O

(
n−r

r f1(r)
)



Proof of 2d RIC Theorem
Backward Analysis

Theorem

f1(r) = O(f0(r))

R a subset of P of size r
Consider a random sample R′ of R of size r − 1

Exp(|F0(R′)|) =
1

r
|F1(R)|+ r − b

r
|F0(R)|

f0(r − 1) =
1

r
f1(r) +

r − b

r
f0(r)

b

r
f0(r) ≥ 1

r
f1(r)

(assuming that f0(r) is a growing function of r). �



Proof of 2d RIC Theorem
Summary

RIC and first order moment
Expected total number of conflicts with constructed regions∑

r

∑
j

|Fj(P)|
(

j
1

)
b

r
pj(r) =

∑
r

b
m1(r)

r

First order moment theorem
m1(r) = f1(r) n−r+1

r−b = O
(

n−r
r f1(r)

)
Backward Analysis
f1(r) = O(f0(r))

Conclusion
The expected total number of conflicts with constructed regions is:

O

(
n∑

r=1

n − r

r2
f0(r)

)



On Line Algorithms

The influence graph
• A directed acyclic connected graph,
• with one node for each constructed region.
• The region of a node is included in the union

of the regions of its parents

Localisation
To find the conflicts when inserting a new object p
visit all the nodes in the influence graph in conflict with p

Randomised complexity: O
(∑n

r=1
n−r
r2 f0(r)

)
provided that the outdegree of each node is bounded.



On Line Convex Hull

Regions are now defined by d + 1 points: {p0, p1, . . . pd}
h+

0 halfspace bounded hy hyperplan through {p1, . . . pd}
and not including p0

h+
d halfspace bounded hy hyperplan through {p0, p1, . . . pd−1}

and not including pd

region: h+
0 ∪ h+

d

Regions defined by P
and without conflict in P
are in bijection with the
(d − 2)-faces of conv(P)



On Line Convex Hull

Updating the influence graph

• Each node is attached to one or two parents

• Each node received 1 + (d − 1) = d children



Incremental Delaunay Triangulation

P set of points in Rd

Del(P) can be obtained from a convex hull in Rd+1

Inserting a new point pi :
1. Location : Find all current cells

whose circumball includes pi

2. Update the Delaunay triangulation :
star the hole from pi

T

pi

pi

pi



Incremental Delaunay Triangulation
conflict graph

Ojects : point in Rd

Regions : d-simplex in Rd

p conflicts with τ iff
p ∈ circumball(τ)

Conflict test
en 2D incircle(pi , pj , pk , pl)

p0

p1
p2

p4

sign


∣∣∣∣∣∣∣∣

1 1 1 1
xi xj xk xl

yi yj yk yl

x2
i + y2

i x2
j + y2

j x2
k + y2

k x2
l + y2

l

∣∣∣∣∣∣∣∣ ∗
∣∣∣∣∣∣

1 1 1
xi xj xk

yi yj yk

∣∣∣∣∣∣




Incremental Delaunay Triangulation
Influence graph: the Delaunay tree

Ojects : points in Rd

Regions : union of two balls circumscribed
to adjacents d-simplex,
defined by d + 2 points

Updating the Delaunay tree

Each constructed region is attached to one or two parents in the

Delaunay tree



Incremental Delaunay Triangulation
The Delaunay hierarchy

The Delaunay hierarchy
A location data structure
widely used.

Level 0 is Del(P)
Each data point p in level l
is introduced in level l + 1
with probability β = 1

α

Location structure

1/α



Incremental Delaunay Triangulation
The Delaunay hierarchy

Location of point q:
find the nearest neighbor of q in P
nl(q): nearest neighbor of q in Pl

Locate q in highest level
From nl+1(q) to nl(q):
- use the pointer of nl+1(q) to level l
- walk in level l from nl+1(q) to nl(q)

The number of steps performed at level(l) : ml

at most k if nl+1(p) is the kth neighbor of q in Pl

Exp(ml) ≤
nl∑

k=1

k(1− β)k−1β

≤ β
[− ∂

∂β

∑
k

(1− β)k
]

=
1

β

Expected total number of steps: O(log n).



Randomization
A tool for combinatorial results

Theorem (The sampling theorem)
P a set of n objects
F≤k(P) regions defined by P with at most k conflicts on P
b the number of objects to define a region
f0(r) the expected number of regions defined and

without conflict on a random r-sample.
For 2 ≤ k ≤ n

b+1 ,

|F≤k(P)| ≤ 4(b + 1)bkbf0(
⌊n

k

⌋
).



Randomization
Proof of the sampling theorem 1.

f0(r) =
∑

j

|Fj(P)|

(
n − b − j

r − b

)
(

n
r

) ≥ |F≤k(P)|

(
n − b − k

r − b

)
(

n
r

)

then, we prove that

(
n − b − k

r − b

)
(

n
r

) ≥ 1

4(b − 1)bkb

(
n − b − k

r − b

)
(

n
r

) =
r !

(r − b)!

(n − b)!

n!︸ ︷︷ ︸
≥ 1

4

(n − r)!

(n − r − k)!

(n − b − k)!

(n − b)!︸ ︷︷ ︸
≥ 1

(b−1)bkb



Randomization
Proof of the sampling theorem 2.

(n − r)!

(n − r − k)!

(n − b − k)!

(n − b)!
≥

(
n − r − k + 1

n − b − k + 1

)k

≥
(

n − n/k − k + 1

n − k

)k

≥ (1− 1/k)k ≥ 1/4 pour (2 ≤ k),

r !

(r − b)!

(n − b)!

n!
=

b−1∏
l=0

r − l

n − l
≥

b∏
l=1

r + 1− b

n

≥
b∏

l=1

n/k − b

n

≥ 1/kb(1− bk

n
)b ≥ 1

kb(b + 1)b
pour (k ≤ n

b + 1
).



Bound on the number of k-sets
using randomization

k-sets
P a set of n points in Rd .
A k-set of P is a subset P ′ of P with size k
that can be separated from P \ P ′ by a hyperplan.

Bound on the number of k-sets
For a set of n points in Rd ,
the number of l-sets with l ≤ k is:

O
(

kd d
2 enb d

2 c
)



Bound on the number of k-sets
using randomization

ck(P) number of k-sets of P
c ′k(P) number of k-sets separated
by a hyperplan through points of P
c ′≤k(P) =

∑
l≤k c ′l(P)

c ′≤k(n) = sup|P|=n c ′≤k(P)

Objects : points of Rd

Regions : halfspaces in Rd , b = d
Conflict between p and h+ : p ∈ h+

Sampling th: c ′≤k(P) ≤ 4(b + 1)bkbf0
(⌊

n
k

⌋)
Upper bound th: f0(

⌊
n
k

⌋
) = O

(
nb d

2 c
kb d

2 c
) ⇒ c ′≤k(n) = O

(
kd d

2 enb d
2 c
)



Hyperplan Arrangements
k-sets and k-levels

Duality:

p ∈ Rd −→ p∗ : xd + pd − 2
d−1∑
i=1

pi · xi = 0

P ∈ Rd −→ P∗ = {p∗ : p ∈ P}
Arrangement : A(P∗)

ck(P) ↔ cells with level k or n − k

c ′k(P) ↔ vertices of A(P∗) with level k or n − k



Bound on the number of k-sets
End

Each cell in A(P∗) has at most one leftmost and one rightmost vertex.
Each vertex v in A(P∗) is the rightmost or leftmost vertex of a single cell
f .
If the level of f is k , the level of v ∈ [k − d + 1, k − 1]

hence, ck(n) ≤ 2
∑k−1

l=k−d+1 c ′l(n)

ck(n) ≤ 2
∑k−1

l=k−d+1 c ′l(n)

c ′≤k(n) = O
(

kd d
2 enb d

2 c
) }

⇒ c≤k(n) = O
(

kd d
2 enb d

2 c
)



k-order Voronoi Diagrams

Each cell is the locus of points with the same set of k-nearest
neighbors.



Back to Space of Spheres

σ

h(σ)

P

p point in Rd → φ(p) = (p, p2) ∈ Rd+1

σ sphere de Rd → φ(σ) ∈ Rd+1

x2 − 2c · x + s = 0 φ(σ) = (c , s),
s = c2 − r2 hyperplane φ(σ)∗

xd+1 − 2c · x + s = 0

1. Si σ = {p}, φ(σ) ∈ P, φ(σ)∗ hyperplan tangent à P
2. L’intersection φ(σ)∗ ∩ P se projette sur xd+1 = 0 selon σ

σ(x) = 0 ⇐⇒ x2 − 2c · x + s = 0⇐⇒ φ(x) ∈ φ(σ)∗

σ(x) < 0 ⇐⇒ x2 − 2c · x + s < 0⇐⇒ φ(x) ∈ φ(σ)∗−

σ(x) > 0 ⇐⇒ x2 − 2c · x + s > 0⇐⇒ φ(x) ∈ φ(σ)∗+



k-Order Voronoi Diagrams
Back to space of spheres

σ

h(σ)

P

Complexity of k-order Voronoi diagram
Let P be a set of points in Rd . The total number of faces in Voronoi
diagrams of P of order up to k is

O
(

kd d+1
2 enb d+1

2 c
)

Proof. Each cell in the k-order Voronoi diagram of P corresponds to :
- a k-set of φ(P) in Rd+1.

- a cell of level k in the arrangement A(φ∗(P)) in Rd+1.


	Randomized Algorithms

