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Back to Incremental Convex Hull

P a set of n points in RY

@ Sort P by lexicographic order
P = {Ph---,Pn}

® Fori=1,...n,
insert pjy1: conv(P;) — conv(P; U pi11)




Back to Incremental Convex Hull

Pi - {P17~-~7Pi}
Updating conv(P;) into conv(P; U pi+1): a color story

Facet A facet f of conv(P;) with supporting hyperplan hy is:
— red iff conv(P;) and p;y1 are on differents side of hy.
— blue iff conv(P;) and p;41 are on the same side of hy.

k-Faces with k < d — 1 of conv(P;) is:

— red iff it is the intersection of red facets

— blue iff it is the intersection of blue facets

— purple iff it is included in red and blue facets




Back to Incremental Convex Hull

Updating conv(P;) into conv(P; U piy1) :
@ find a first red facets (there is one incident to p;)
@ find the set of red facets (they form a connected set)

© delete red faces
install new faces = conv(e U pj+1)
where e is a purple face of conv(P;).




Back to Incremental Convex Hull

Complexity
Sorting + the total number of created facets

) (nlognJrZ;’:liL%J) =0 (nlogn+n|_%J)

Randomized incremental convex hull: O <n|og n+ nL%J)

Optimal convex hull: O (nlog n+ nL%J)



Back to Incremental Convex Hull

A bad case in 3D

‘:"‘ e e e 8 0

The bad case arises with a special set of points
inserted in a special order.
Hence the idea of randomization.



Randomized Algorithms

What is a randomized algorithms

e A randomized algorithm computes the exact solution of a
deterministic problem

e The algorithm performs internal random choices.
that influence the algorithm’s behaviour but not the output.

e Analysis of the algorithm: expectation over the random choices.

Randomized incremental algorithms
random choices: random insertion order of the data

Randomized analysis of on line algorithms

e An on line algorithm handles data according to the given input order.
e Expected complexity with respect to a random input order.



The Formalism of Regions and Conflicts

Data : a finite set P of objects in O

Region - a subset of i < b objects that defines the region
- a subset of O in conflict with the region

Problem of interest build the set of regions defined by P
without conflict on P

Regions and Conflicts for the Convex hull

— objects are points in RY

— regions are halfspaces of R

— each region is defined by d-points
— p in conflict with At iff p € AT

set of regions
facets of conv(P) = ¢ defined by P
with no conflict on P



Randomized Incremental Construction

Notations

Let P be a finite set of objects.

F(P) the set of regions defined by objects in P

Fj(P) the set of regions defined by objects in P
in conflict with j objects in P.

Incremental construction of Fo(P).

At each step:
- a new point p of P is added in a subset R C P
- the set Fo(R) is updated.

Randomized hypothesis

The order of insertion of objects in P is random.
At each step r, R is a r-sample of P, i.e. a random subset with size r.



Randomized Incremental Construction

Expected number of constructed regions
R random subset of P with size r

fo(r) expected number of regions defined on R and without conflict on R
Theorem (First RIC theorem)

The expected total number of regions constructed by the RIC is:
oz, 80)

Proof.
probability for f € F(P) to be in Fo(R) : pr(r)
Probability for f € F(P) to appear in Fo(R) at step r : 2p¢(r)

f(r) = Y pr(r)

feF(P)

Expected total number of regions b B fo(r)
constructed by the RIC - sz: 7Pf(l’) =0 Z




Randomized Incremental Convex Hull

Expected number of constructed regions

In the convex hull case fo(r) = O(rL%J)

Expected total number of regions - 0 (Z fo(r)) _0 (nL%J)
r

constructed by the convex hull RIC -
r=

This not the end of the story for the RIC of convex hulls:
since points are inserted in random order

we can no more rely on the lexicographic order

to find the first red facet at each insertion.



Randomized Incremental Convex hull
A first solution : the conflict graph

The conflict graph
A bipartite graph on P x Fo(R):
Vp € P\R, an edge (p, f) where f € Fo(R) conflicts with p.

Using conflict graph
conv(R) — conv(R U p)
- the conflict graph edge of p provides the first red facet.
- Find all the red facets by walking on facets of conv(R) in conflict with p
- Update the convex hull
- Update the conflict graph
for each g # p in P\ R, find a new conflict graph edge
by walking on facets of conv(R) conflicting with p and g



Randomized Incremental Convex hull
Updating the conflict graph

Update the conflict graph

Insertion of p : conv(R) — conv(R U p)
Let g€ P\R, g # p.
Walk on the facets f of conv(R) in conflict with p and g
- if a neighbor g of f conflicts with ¢ but not with p : edge(q,g)
- if a neighbor g of f conflicts neither with g nor f
' neighbor of g in conv(RUp)st. gNf=gnNf’
edge (q,f’) if g and f’ conflict.
- if neither happens, discard gq.



Randomized Incremental Constructions
Conflict graph complexity

Total complexity of convex hull

- Update of convex hulls : total number of constructed regions
- Finding conflicts + updating the conflict graphs :
total number of conflicts with constructed regions

Theorem (Second RIC theorem)

The expected total number of conflicts with constructed regions is:

0 (Z ”;rfom)

r=1

Expected complexity of convex hull RIC

f(N=0(r4), 0, %h(r) = 0 (nlogn+nlt))




Proof of 2d RIC Theorem

Statistics on regions

RCP

F;(P) the set of regions defined by P with j conflicts in P.
Fj(R) the set of regions defined by R C P with j conflicts in R.
fi(r) expected size of F;(R).

: J n—b—j
R being a random sample K F—b—k
probability for f € F;(P)  pj«(r) =

to be in Fi(R) < n )

f(r) = Zu: )| pik(r
fo(r) = ZU: )| pi(r)



Proof of 2d RIC Theorem

Moments

RCP
P(f) set of objects in P in conflict with region f

Moment of order k of R with respect to P
P(f
m(R, P) = X rer(r) < | 5( ) > .

Expectation for a r-sample

mtr) =S, (PO rovatr e 7u(m) = 51520 (4, ) pit)

RIC and first order moment
Expected total number of conflicts with constructed regions

S (1) a0 =3 ™0



Proof of 2d RIC Theorem

Moments Theorem

Theorem (Moments theorem)

(n—r+ k) (r—b—k)!

mi(R) < fi(R)

(n—r)t (r—»b)
mkl:(rr%oi b fi(r) = . ,
need J n—
=150 ( Jk)<<3> 5 () () (rn_>b_

First order moment : my(r) = f(r)="t = O (=Lf(r))




Theorem

R a subset of P of size r

Proof of 2d RIC Theorem

fi(r)

Backward Analysis

= O(fo(r))

Consider a random sample R’ of R of size r — 1

Exp(|Fo(R)])

- 1)
Za0)

>

YRR+ L IR(R)
1 r—>b

;fl(r)+ fo(r)
Lh)

(assuming that fy(r) is a growing function of r).



Proof of 2d RIC Theorem

Summary

RIC and first order moment
Expected total number of conflicts with constructed regions

ZZ [75(P)l ( Jl > %pj(r) = melr(r)

First order moment theorem
my(r) = fi(r) =2t = O (%£A(r))

Backward Analysis
fi(r) = O(fo(r))

Conclusion
The expected total number of conflicts with constructed regions is:

0 (Z > rfo<r>>

r=1




On Line Algorithms

The influence graph

e A directed acyclic connected graph,

e with one node for each constructed region.

e The region of a node is included in the union
of the regions of its parents

Localisation
To find the conflicts when inserting a new object p
visit all the nodes in the influence graph in conflict with p

Randomised complexity: O (>7_; %52 fo(r) )
provided that the outdegree of each node is bounded.



On Line Convex Hull

Regions are now defined by d + 1 points: {po, p1,.--Pd}

ho+ halfspace bounded hy hyperplan through {p1,...p4}
and not including pg

h’ halfspace bounded hy hyperplan through {po, p1,...ps—1}
and not including py

region: hi U hj

Regions defined by P \
and without conflict in P \
are in bijection with the !
(d — 2)-faces of conv(P) \




On Line Convex Hull

Updating the influence graph

e Each node is attached to one or two parents

e Each node received 1+ (d — 1) = d children



Incremental Delaunay Triangulation

P set of points in RY
Del(P) can be obtained from a convex hull in R9+1
Inserting a new point p;:
1. Location : Find all current cells
whose circumball includes p;
2. Update the Delaunay triangulation :
star the hole from p;




Incremental Delaunay Triangulation
conflict graph

Ojects : point in RY P4
Regions : d-simplex in RY Po ’
p conflicts with 7 iff
p € circumball(7)
Conflict test
en 2D incircle(pj, pj, p«, Pi) b1 b2
1 1 1 1 11 1
sign i i Xk X x| Xi X Xk
Yi Yj Yk Y ) g
ry? FhyE RAyR oG4y 1K



Incremental Delaunay Triangulation

Influence graph: the Delaunay tree

Ojects : points in RY

Regions : union of two balls circumscribed
to adjacents d-simplex,
defined by d + 2 points

Updating the Delaunay tree

Each constructed region is attached to one or two parents in the
Delaunay tree




Incremental Delaunay Triangulation

The Delaunay hierarchy
A location data structure
widely used.

Level 0 is Del(P)

Each data point p in level /
is introduced in level / 4+ 1
with probability § = é

The Delaunay hierarchy

=]

Location structure

N

1/ (1\{/
=



Incremental Delaunay Triangulation
The Delaunay hierarchy

Location of point g:
find the nearest neighbor of g in P
ni(q): nearest neighbor of g in P,

Locate g in highest level

From n;11(q) to m(q):

- use the pointer of n;;1(q) to level /
- walk in level | from n;;11(q) to ni(q)

The number of steps performed at level(/) : m,
at most k if n;11(p) is the kth neighbor of g in P,

Exp(m)) < Z k(1—p)<1p
k=

0

a2t

Expected total number of steps: O(log n).

IN

Q\'—‘



Randomization

A tool for combinatorial results

Theorem (The sampling theorem)

‘P a set of n objects
F<k(P) regions defined by P with at most k conflicts on P
b the number of objects to define a region
fo(r) the expected number of regions defined and
without conflict on a random r-sample.

n
For2§k§m,

[ F<(P)| < 4(b+1)°kPh(| 7 ).



6(r) = Y 17(P)

Random

ization

Proof of the sampling theorem 1.

(

n
r

(

)

n—b—k
r—o>b

)

n—b—k

)

U2),

(")

then, we prove that ( - > > R
< ( )) L OB o b

==

1)bkb



Randomization

Proof of the sampling theorem 2.

(n—=r—kK! (n—>b)! n—b—k+1
n—n/k—k+1 g
(=)

(1—1/k)* >1/4 pour (2 < k),

(n=n! (n=b-k)t (n—r—k+1)k

v

b—1 b
rt (n—b)! r—1 r+1—b
= > _—
(r—5b)! nl 1_[n—/_l_[ n
1=0 I=1
b
n/k—b
> 11
="
bk 1 n
> b(1— =) <
> 1/k°(1 n) = (b1 1) pour (k < b1




Bound on the number of k-sets

using randomization

k-sets

P a set of n points in RY.

A k-set of P is a subset P’ of P with size k °
that can be separated from P \ P’ by a hyperplan. ®

Bound on the number of k-sets o« o _—®
For a set of n points in RY, /. .

the number of /-sets with / < k is:

(0] (k[%] n\_%J)



Bound on the number of k-sets

using randomization

ck(P) number of k-sets of P
c’k(P) number of k-sets separated
by a hyperplan through points of P

c'<k(P) = Zlgk c'i(P) * .-
c'<(n) = SUP|p|=n c'<k(P) o - .,
Objects : points of RY o

Regions : halfspaces in RY, b= d
Conflict between p and h™ : p € ht

Sampling th: ¢’<x(P) < 4(b+ 1)°k"% (| 7])
c(n a4
Upper bound th: fy( M (km



Hyperplan Arrangements

k-sets and k-levels

Duality:
d—1

peR? — P*5Xd+Pd_2ZPi'Xi:0
i=1

PcR! — P ={p":pcP}

Arrangement : A(P*)

cells with level k or n — k

vertices of A(P*) with level k or n — k

o0
33
11



Bound on the number of k-sets
End

Each cell in A(P*) has at most one leftmost and one rightmost vertex.

Each vertex v in A(P*) is the rightmost or leftmost vertex of a single cell
f.

If the level of f is k, the level of v € [k —d + 1,k — 1]
hence, c(n) < 23150 441 ¢i(n)

(n)<2z 1 ¢'i(n) 47 | d
& ei(n) = o'(kkﬁ L 'J) }  caul(n) = 0 (kT¥1nl])



k-order Voronoi Diagrams

Each cell is the locus of points with the same set of k-nearest
neighbors.



Back to Space of Spheres

x2—2c-x+s=0 (o) = (c,s),
s=c?—r? hyperplane ¢(o)*

1. Si 0 = {p}, ¢(0) € P, ¢(0)* hyperplan tangent a P
2. L'intersection ¢(c)* NP se projette sur x411 = 0 selon o

P
O p point in RY —  ¢(p) = (p, p?) € RI*!
v o sphere de R? —  ¢(o) € RITL

o(x)=0 <= x?—2c-x+s5=0<+= é(x) € ¢(o)*
o(x) <0 <= x*—2c-x+5<0<= ¢(x) € (o)
o(x) >0 <= x*>—2c-x+5>0<= é(x) € (o)



k-Order Voronoi Diagrams

Back to space of spheres

Complexity of k-order Voronoi diagram
Let P be a set of points in RY. The total number of faces in Voronoi
diagrams of P of order up to k is

o (/J%ML%J)

Proof. Each cell in the k-order Voronoi diagram of P corresponds to :
- a k-set of ¢(P) in RI+L,
- a cell of level k in the arrangement A(¢*(P)) in R9*1,



	Randomized Algorithms

