Chapter 11

Fractional Relaxation

Lots of combinatorial problems are very close to linear programmes. Indeed they can be for-
mulated as a linear programme with the extra requirement that some of the variable be integers
(and not real). Such programmes are called integer linear programmes.

For example, consider MAXIMUM MATCHING, which is the problem of finding the largest
matching in a graph. Recall that a matching in a graph is a set of pairwise non-adjacent edges.
The size of a largest matching in a graph G is denoted by u(G). With any matching M of
a graph G, we may associate its (0, 1)-valued indicator vector x (that is x, = 1 if e € M and
x. = 0 otherwise). Since no matching has more than one edge incident with any vertex, every
such vector x satisfies the constraint ) ,5,x, < 1, for all v € V. Thus an instance of MAXIMUM
MATCHING may be formulated as the following integer linear programme.

Maximize },cgx. subjectto :
Yesoxe <1 forallveV (11.1)
xe€IN forallec E

For every edge e, the constraint in any of its endvertices implies that x, < 1. So the condition
x. € IN is equivalent to the condition x, € {0, 1}.

As a second example, consider VERTEX COVER, the problem of finding a minimum vertex
cover in a graph. Recall that a vertex cover in a graph G = (V, E) is a set of vertices S C V such
that every edge has at least one endvertex in S. A vertex cover of minimum cardinality is said to
be minimum. The cardinality of a minimum vertex cover is denoted by v(G). Letting y be the
indicator vector of a vertex cover (i.e. y, = 1 if it is in the vertex cover and y, = 0 otherwise),
an instance of VERTEX COVER has following Integer Linear Programming formulation.

Minimize Y,y Yy subjectto :
Yutyy =1 foralluv € E (11.2)
vy €N forallveV

Again the condition y integral is equivalent to the condition y (0, 1)-valued. Indeed if y, > 1 for
some v, then setting y, to 1, we obtain a solution with smaller weight, so an optimal solution is
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necessarily (0, 1)-valued.

VERTEX COVER is known to be NP- hard (see [11]) and, like many NP- hard problems
(see e.g. Exercise 11.1 and 11.2), it may be formulated as integer linear programme. There-
fore, solving integer linear programmes is NP- hard in general. However, writing a problem
as an integer linear programme is often very useful. First, one can always relax the integrality
conditions to obtain a linear programme, called fractional relaxation of problem.

For instance, the fractional relaxation of (11.1) is the following linear programme.

Maximize },cgxe subjectto :
YeorXe <1 forallveV (11.3)
xe>0 forallec E

Since a feasible solution of an integer linear programme is always a feasible solution of its
fractional relaxation, the optimal solution of this linear programme is at least as good as that of
the integer linear programme. That is, in a maximization problem, the relaxed programme has a
value greater than or equal to that of the original programme, while in a minimization problem
the relaxed programme has a value smaller than or equal to that of the original programme.
For instance, a feasible solution to (11.3), is called a fractional matching, and the maximum
value of a fractional matching of G is called the fractional matching number and is denoted
tr(G). Then us(G) > u(G). For many graphs G, we have u¢(G) > u(G). For example, for any
odd cycle Cyiy 1. Setting x, = 1/2 for all edge e, we obtain that us(G) > (2k+1)/2 (in fact,
ur(G) = (2k+1)/2, see Exercise 11.3) while u(G) = k.

The problem FRACTIONAL MATCHING, which consists in finding a fractional maximal
of value u¢(G) can be formulated as the linear programme (fractional-matching) which has a
polynomial number of constraints. Therefore, it can be solved in polynomial time.

Similarly, the fractional relaxation of (11.2) is

Minimize Y,y )y subjectto :
yu+yw>1 foralluv € E (11.4)
y, >0 forallveV

A feasible solution to (11.4), is called a fractional vertex cover, and the minimum value of
a fractional cover of G is called the fractional vertex cover number and is denoted v¢(G). Then
V¢(G) < Vv(G). For many graphs G, we have v¢(G) < v(G). For example, for any odd cycle
Co+1. Setting y, = 1/2 for all vertex v, we obtain that v(G) < (2k+1)/2 while v(G) = k+ 1.
The problem FRACTIONAL VERTEX COVER, which consists in finding a fractional vertex cover
of value v¢(G) can be solved in polynomial time, because of its linear programming formulation
(fractional-cover).

Observe that the two linear programmes (11.3) and (11.4) are dual to each other. Thus by
the Duality Theorem, u¢(G) = v¢(G), and so

u(G) <us(G) =vs(G) <Vv(G).
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Hence, fractional relaxation and the Duality Theorem prove the (simple) fact that in a graph
the maximum size of a matching is smaller than the minimum size of a vertex cover. More
generally, it may be used to prove some relation between two parameters which may seem
unrelated at first glance, and may lead to nice and elegant proofs. See Subsection 11.1.3.

But fractional relaxation is also very useful in an algorithmic prospect. Indeed sometimes
the fractional problem has the same optimal value as the original one, and so solving the former
via linear programming yields a polynomial-time algorithm to solve the later. This is the case
for MAXIMUM MATCHING in bipartite graphs.

Proposition 11.1. If G is bipartite, then (11.3) has an integral optimal solution, which is thus
an optimal solution to (11.1). So u(G) = us(G).

Proof. Let x be an optimal solution to (11.3). Then us(G) = ¥ ,cg Xe.

If x is integral, then we are done. If not, we describe a procedure that yields another optimal
solution with strictly more integer coordinates than x. We then reach an integral optimal solution
by finitely many repetitions of this procedure.

Let H be the subgraph of G induced by the set of edges {e | x, ¢ {0,1}}.

Suppose first that H contains a cycle C = (vq,v...,v,v;). Since G and so H is bipartite, C
must be even.

Lete = min min{x,, 1 —x.}. Define x" and x” as follows:
ecE(C)

Xe—¢€, ife=vviy1, 1 <i<k—1andiisodd,
X, = Xe+¢€, ife=vviy1, 1 <i<kandiiseven,
Xe, ife¢ E(C).

and
Xe+¢€, ife=vvi1,1 <i<k—1andiisodd,
X, = Xe—¢€, ife=vv1,1 <i<k—1andiiseven,
Xe, ife¢ E(Q).

where the indices must be considered modulo k. These are two admissible solutions to (11.3).
Moreover,

er = % (Zxé—k Zxé’) .
ecE ecE ecE
Thus x” and x” are also optimal solutions and, by the choice of €, one of these two solutions has
more integer coordinates than x.

Hence, we may assume that H has no cycle. Consider a longest path P = (vi,va...,v%) in
H. Observe if e is an edge e incident to vy (resp. v) and different from vyv,, (resp. vi_1vi, then
x. = 0, for otherwise H would contain either a cycle or a longer path.

Defining € = mi(n : min{x,, 1 —x.} and x" and x” similarly as above, we obtain two admisi-
ecE(P

ble solutions to (11.3). Observe that if P is odd, then the value of x”, is greater than the one of
x, which contradicts the optimality of x. If P is even, both x’ and x” are also optimal solutions
and, by the choice of €, one of these two solutions has more integer coordinates than x. O]
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Remark 11.2. Observe that the proof of Proposition 11.1 easily translates into a polynomial-
time algorithm for transforming an optimal solution to (11.3) into an integral optimal solution
to it which is necessarily an optimal solution to (11.1). Hence, one can solve MAX MATCHING
in bipartite graphs in polynomial time by computing an optimal solution to (11.3) and then
modifying it into an optimal solution to (11.1).

One can show the following analogue for VERTEX COVER in bipartite graphs. (Exer-
cise 11.4).

Proposition 11.3. If G is bipartite, then (11.4) has an integral optimal solution, which is thus
an optimal solution to (11.2). So v(G) =V (G).

Propositions 11.1 and 11.3, together with the Duality Theorem, now imply the following
fundamental min—max theorem, due independently to Konig [20] and Egervary [9].

Theorem 11.4 (KONIG-EGERVARY THEOREM).
In any bipartite graph G, the number of edges in a maximum matching is equal to the number
of vertices in a minimum vertex cover. In other words, u(G) = v(G).

In fact, Propositions 11.1 and 11.3 are particular cases of a more general paradigm, called
total unimodularity, which gives a sufficient condition for a linear programme to have an inte-
gral solution. This is discussed in Section 11.1. There are other examples for which the optimal
values of the problem and its relaxation are equal. One of them is given in Subsection 11.2.1.
For all these problems, solving the fractional relaxation gives a polynomial-time algorithm to
solve the problem.

But very often the optimal value of the problem does not equal the optimal value of its relax-
ation. Moreover, for many problems like VERTEX COVER, we cannot expect any polynomial-
time algorithm (unless P = A P) because they are A P-hard. However, sometimes the optimal
values of the probelm and its fractional relaxation are close to each other. In that case, solving
the fractional relaxation gives an approximation of the optimal value of the problem. Moreover,
one can very often derive an approximate solution of the problem from an optimal solution of
the relaxation. The most common technique rounds fractional solutions to integer solutions.
Some examples of deterministic and randomized roundings are given in Sections 11.2 and 11.3,
respectively.

Finally, for some problems, the optimal value of the fractional relaxation is a very bad
estimate for the integer linear programme. This is in particular the case for graph colouring, as
shown in Section 11.4.

11.1 Total unimodularity

We have seen that the objective function of a linear programme attains its optimum at one of
the extreme points of the associated convex polyhedron. A polyhedron is said to be integral,
if all its extreme points are integral. If the polyhedron Ax < b,x > 0 is integral, then every
integer linear programme associated to it has the same optimal value as its fractional relaxation.
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Moreover, since the Simplex Algorithm goes from extreme point to extreme point, in such a
case it returns an integral solution.

Some integral polyhedra have been characterized by Hoffman and Kruskal [15]. A matrix
A is totally unimodular if the determinant of each of its square submatrices is equal to 0, +1,
or —1. Using Cramér’s rule, it is easy linear algebra to show the following.

Theorem 11.5 (Hoffman and Kruskal [15]). The polyhedron defined by Ax <b,x > 0 is integral
for every integral vector b if and only if A is a totally unimodular matrix.

In particular, if A is totally unimodular and b is an integral vector, then the linear pro-
gramme

Maximize ¢Yx subject to :

Ax

b
X 0

IV IA

has an integral optimal solution (if it has one).

Remark 11.6. This characterization requires b to vary. For a given vector b it may be true that
{x | Ax < b,x > 0} is an integral polyhedron even if A is not totally unimodular.

Many totally unimodular matrices have been known for a long time.

Theorem 11.7 (Poincaré [24]). Let A be a (0,—1,+1)-valued matrix, where each column has
at most one +1 and at most one —1. Then A is totally unimodular.

Proof. Let B be a k by k submatrix of A. If k = 1, then det(B) is either 0, +1 or —1. So we
may suppose that kK > 2 and proceed by induction on k. If B has a column having at most one
non-zero, then expanding the determinant along this column, we have that det(B) is equal to 0,
+1, or —1, by our induction hypothesis. On the other hand, if every column of B has both a +1
and a —1, then the sum of the rows of B is 0 and so det(B) = 0. O]

Seymour [25] gave a characterization of totally unimodular matrices, from which a polynomial-
time algorithm to recognize such matrices follows.

In the following two subsections, we show how celebrated min-max theorems follows from
total unimodularity. We then give another application of total unimodularity.

11.1.1 Matchings and vertex covers in bipartite graphs

We now show how Propositions 11.1 and 11.3 follows total unimodularity.
Let G = (V,E) be a graph. The incidence matrix A of G is the matrix whose rows are
indexed by V and the columns by E, and whose entries are defined by

Aye =

>

1 ifvisincident to e
0 otherwise

Hence, the matricial form of (11.3) and (11.4) are, respectively,

Maximize 17x subject to Ax <1 and x > 0. (11.5)
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and
Minimize 17y subjectto ATy >1 and y > 0. (11.6)

where A is the incidence matrix of G.

Proposition 11.8. The incidence matrix of a bipartite graph is totally unimodular

Proof. Left as Exercise 11.5. O]
Proposition11.8 and Theorem 11.5 imply that (11.5) and (11.6) have integral optimal solu-

tions. This is Propositions 11.1 and 11.3.

11.1.2 Flows via linear programming

The Maximum Flow Problem (7.3) can be formulated as a linear programme. Indeed writing
fuy instead of f(u,v) and ¢y, instead of ¢(u,v), the problem becomes

Maximize Z fov
VENT(s)
Subject to:
fuv <cuw foralluv € E
Y fo— Y fw=0 forallveV\{ss}
ueN=(v) weN*(v)
fuvzo foralluv € E

Let D = (V,E) be a digraph. The incidence matrix A of G is the matrix whose rows are
indexed by V and the columns by E, and whose entries are defined by

+1 ifvisthe head of e
aye = —1 if visthetail of e
0 otherwise

Let A’ be the matrix obtained from A by removing the rows corresponding to s and 7, I be
the |E| by |E| identity matrix, d be the indicator vector of set of arcs leaving s, and ¢ = (c;)ck-
Then a possible matricial formulation of the Maximum Flow Problem is

Maximize d” f subjectto If < ¢ and A'f=0 and f>0. (11.7)

;, ] is unimodular (Ex-
ercise 11.6). Thus Theorem 11.5 implies that, if all capacities are integers, then the maximum
value of a flow is an integer and that there exists an integral maximum flow. Moreover, as al-
ready obeserved, the Simplex Algorithm returns an integral flow. Such a flow is also returned
by Ford-Fulkerson Algorithm (See Remark 7.12).

The total unimodularity also implies Ford—Fulkerson Theorem (7.7). The maximum value

of an (s,t)-flow equals the minimum capacity of an (s,t)-cut..

Similarly to Theorem 11.7, one can show that the matrix M := [
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Alternative proof of Theorem 7.7. By Exercise 9.15, the dual problem of (11.7) is
Minimize ¢’y subject to y—|—A’Tz >d and y > 0. (11.8)

Because the matrix [I, A’ T] is totally unimodular, by Theorem 11.5, the minimum of (11.8)
is attained by integral vectors ¥ and Z.

Now define Vy = {v e V\ {s,¢t} | Z, <0} U{s} and V; = V \ V;. Then C = (V,V;) is an
(s,1)-cut. We shall prove that C is a cut with capacity less or equal to the maximum flow value
Vmax- By the Duality Theorem (9.10), vinax = ¢! §, and trivially 8(C) > viax, we need to prove
that 8§(C) < ¢’§. But §(C) =Y, ccc(e) and ¢’'§ = ¥, c(e)F.. Since the §, are non-negative,
it is sufficient to prove that j(e) > 1 for all e € C.

Let uv be an arc of C. Recall that § + ATz >d. If u #s, then y,+ 7, — 7, > 0,with Z, = 0.
But by definition of Vj, 7, > 0 and Z,, < 0, and so Z, < —1, since Z is integral. Hence, y, > 1. If
u = s, then y, — 7, > 1, which again implies y, > 1. O

11.1.3 Covering a strong digraph with directed cycles

Gallai-Milgram Theorem (6.14) states that every digraph D can be covered by at most (D)
directed paths. A natural question is to ask if a digraph could be covered by few directed cycles.
In general, the answer is no as there are digraphs in which some vertices are in no cycles.
But in every strong digraph, any vertex is contained in a directed cycle. In 1964, Gallai [10]
conjectured an analogue of Gallai-Milgram Theorem for covering strong digraphs with directed
cycles. This was proved in 2004 by Bessy and Thomassé [4].

Theorem 11.9 (Bessy and Thomassé [4]). The vertex set of any non-trivial strong digraph D
can be covered by o(D) directed cycles.

They established it by proving a stronger result, namely a min—max theorem relating a cyclic
analogue of the stability number to the minimum index of a cycle covering. Here, we present a
closely related min—max theorem established by Bondy, Charbit and Sebd.

Let D= (V,E) be adigraph. By a cyclic order of D we mean a cyclic order O = (vi,v2,...,Vn,v1)
of its vertex set V. Given such an order O, each directed cycle of D can be thought of as winding
around O a certain number of times. In order to make this notion precise, we define the length
of an arc (v;,v;) of D (with respect to O) to be j—iif i < jand n+ j—iif i > j. Informally,
the length of an arc is just the length of the segment of O ‘jumped’ by the arc. If C is a directed
cycle of D, the sum of the lengths of its arcs is a certain multiple of n. This multiple is called
the index of C (with respect to 0), and denoted i(C). By extension, the index of a family C of
directed cycles, denoted i(C), is the sum of the indices of its constituent cycles.

A weighting of the vertices of a digraph D is a function w : V. — IN. We refer to w(v) as
the weight of vertex v. By extension, the weight w(H) of a subgraph H of D is the sum of
the weights of its vertices. If D is equipped with a cyclic order O, and if w(C) < i(C) for
every directed cycle C of D, we say that the weighting w is index-bounded (with respect to O).
Observe that for any cycle covering C of D and any index-bounded weighting w,

i(C)> ) w(C) >w(D). (11.9)
ceC
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Theorem 11.10. Let D be a digraph each of whose vertices lies in a directed cycle, and let O
be a cyclic order of D. Then:
min i(C) = max w(D) (11.10)

where the minimum is taken over all cycle coverings C of D and the maximum over all index-
bounded weightings w of D.

In order to deduce Theorem 11.9 from Theorem 11.10, it suffices to apply it to a coherent
cyclic order O of D. A cyclic order is coherent if every arc lies in a directed cycle of index one.
Bessy and Thomassé [4] showed that every strong digraph admits a coherent cyclic order. A
fast algorithm for finding coherent cyclic orders can be found in [16].

We then observe that:

e for every family C of directed cycles of D, we have |C| < i(C),

e because each vertex lies in a directed cycle and O is coherent, each vertex lies in a simple
cycle, so an index-bounded weighting of D is necessarily (0, 1)-valued,

e because each arc lies in a simple cycle, in an index-bounded weighting w no arc can join
two vertices of weight one, so the support of w is a stable set, and w(D) < a(D).

Proof of Theorem 11.10. Let D be a digraph, with vertex set V = {v,..., v,} and arc set E =
{ai,...,an}. It suffices to show that equality holds in (11.9) for some cycle covering C and
some index-bounded weighting w.

An arc (v;,v;) is called a forward arc of D if i < j, and a reverse arc if j < i. Consider the

matrix M
N

where M = (m;;) is the incidence matrix of D and N = (n;;) is the n X m matrix defined by:

— 1 if v; is the tail of a;
& 0 otherwise

Let us show that Q is totally unimodular also. Consider the matrix (~2 obtained from Q by
subtracting each row of N from the corresponding row of M. Each column of Q contains one 1
and one — 1, the remaining entries being 0. Thus, by Theorem 11.7, Q is totally unimodular. Be-
cause Q was derived from Q by elementary row operations, the matrix Q is totally unimodular
too.

We now define vectors b = (by,...,by,) and ¢ = (c1,...,cp) as follows.
, . [0 if1<i<n
L 1 otherwise
L 1 if ajis a reverse arc
€ o= 0 otherwise

Before proceeding with the proof, let us make two observations:
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e If x := fc is the circulation associated with a directed cycle C, then ex = i(C), the index
of C.

e If Nx > 1, where x:= Y {Yc fc : C € C} is a linear combination of circulations associated
with a family C of directed cycles of D, then C is a covering of D.

Consider the linear programme:

Minimize ¢”x
subjectto Qx > b (11.11)
x > 0

The system of constraints Qx > b is equivalent to the two systems Mx > 0 and Nx > 1.
Because the rows of M sum to 0, the rows of Mx sum to 0, which implies that Mx = 0. Thus
every feasible solution to (11.11) is a non-negative circulation in D. Recall that a circulation of
D is a mapping f: E(D) — R, such that for every vertex v ¥ ,en-(v) f(uv) = Xuen+) f(vir).
Hence, a non-negative linear combination ) yc fc of circulations associated with directed cycles
of D (Exercise 11.8). Moreover, because Nx > 1, the cycles of positive weight in this sum form
a covering of D. Conversely, every cycle covering of D yields a feasible solution to (11.11). The
linear programme (11.11) is feasible because, by assumption, D has at least one cycle covering,
and it is bounded because ¢ is non-negative. Thus (11.11) has an optimal solution. Indeed,
by Theorem 11.5, the problem (11.11) has an integral optimal solution, because Q is totally
unimodular and the constraints are integral. This solution corresponds to a cycle covering C of
minimum index, the optimal value being its index i(C).

We now study the dual of (11.11):

Maximize b’y

subjectto Q'y < ¢ (11.12)
y =2 0
Letus write y := (z1,...,2n,W1,...,w,). Then (11.12) is the problem of maximizing Y7 | w;

subject to the constraints:

1 ifaj:= (vi,v) is a reverse arc
i — w; < e D
G Wi S { 0 ifajisaforward arc
Consider an integral optimal solution to (11.12). If we sum the above constraints over the
arc set of a directed cycle C of D, we obtain the inequality

Y wi<i(c)

vieV(C)

In other words, the function w defined by w(v;) :=w;, 1 <i < n, is an index-bounded weighting,
and the optimal value is the weight w(D) of D. By the Duality Theorem (Theorem 9.10), we
have i(C) = w(D). O
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11.2 Deterministic rounding

Unfortunately, most of linear programmes do not have a totally unimodular constraint matrix.
However, the fractional relaxation may still be of interest. It sometimes leads to polynomial-
time algorithms to solve the problem either optimally or approximately. The general idea is to
first compute a solution of the fractional relaxation and then derive from this solution a solution
to the original problem which is either optimal or near optimal.

11.2.1 Minimum cut

Recall that an (s,7)-cut in a graph is a bipartition (V;,V;) with s € Vy and 7 € V,. It is completely
determined by the indicator vector p of V;. Hence a formulation of the minimum (s,7)-cut in a
graph G = (V,E) is the following.

Minimize Y,,,cg cuv|pu — pv| subject to :

ps = 0 (11.13)

p = 1
p € {0,1} Vv € V(G)

It does not immediately appear to be an integer linear programme, but it indeed is for it is
equivalent to the following.

Minimize Y ,,cgcCuwquy Subjectto :

quw—DpPu+py =0 Yuv € E
— >
Guy pv+1;u __0 . Yuv € E (11.14)
s =
p = 1
pr € {0,1} Yvev

quw € {0, 1} Yuv € E

One can check that the matrix corresponding to (11.14) is not totally unimodular (Exer-
cise 11.10). However, solving the fractional relaxation of this problem, (where the constraint
pv € {0,1} is replaced by 0 < p, < 1), gives us the value of a minimum cut and, almost imme-
diately, an optimal solution.

Proposition 11.11. Let p be an optimal solution of the fractional relaxation of (11.13). Then
forall 0 < x < 1, the (0, 1)-valued vector p* defined by p}, = 0 if p, < x and p}, = 1 otherwise,
is an optimal an optimal solution of (11.13) and its fractional relaxation.

Proof. We prove it by induction on the number k of values other than 0 and 1 taken the p,’s, the
result holding trivially if k = 0. Suppose now that k> 1. Let 0 =pg < p1 < pa < --- < pr <
Pr+1 = 1 be the values taken by the p,’s.

Assume that p; < x. Let P (resp. L, R) be the set of vertices v such that p, = p; (resp.

pv=20,p, > p1).
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Z{cvu |ue PveLuveE} :Z{CW |ue PveRuv€E} (11.15)

for otherwise one of p’ and p” defined by

;[ py ifveV\P v | py ifveV\P
pv_{ 0 ifvePp and py=9p, ifver

would contradict that p is an optimal solution. Furthermore, because of (11.15), p’ (and also p”)
is an optimal solution which takes one value less than p. Hence by induction, p* is an optimal
solution of (11.13) and its fractional relaxation.

A symmetrical argument yields the result if p; > x. O]

11.2.2 Vertex cover: 2-approximation and kernel.

If a graph is non- bipartite, then its incidence matrix is not totally unimodular (Exercise 11.5).
We have also seen that for the odd cycles the fractional vertex cover number is strictly less than
the vertex cover number. Moreover finding an optimal vertex cover is NP-hard, so we cannot
hope to have a polynomial-time algorithm to find one. However we shall now see that there
is a 2-approximate algorithm by solving FRACTIONAL VERTEX COVER and then deriving a
solution to VERTEX COVER.

Theorem 11.12. FRACTIONAL VERTEX COVER has an optimal solution which is half-integral,
that is (0,1/2,1)-valued.

Proof. Lety be an optimal solution of FRACTIONAL VERTEX COVER with the largest number
of coordinates in {0,1/2,1}.

Suppose that y does not have all its coordinates in {0,1/2,1}. Set € = min{y,, |y, — %], 1—
wlveVandy, ¢4{0,1/2,1}}.

Consider y’ and y” defined as follows:

yw—g if0<y, <1, yte, if0<y, <1,
o=2% wte ifi<y <l andy/= < y,—g ifl<y <l,
Yy, otherwise. Vv, otherwise.

These are two admissible solutions to FRACTIONAL VERTEX COVER. Moreover, ) ,cy Vv =
3 (Zyevyh+ Lyevyy). Thus y’ and y” are also optimal solutions and, by the choice of €, one of
these two solutions has more coordinates in {0,1/2,1} than y, a contradiction. O]

Remark 11.13. Observe that the proof of Theorem 11.12 easily translates into a polynomial-
time algorithm for transforming an optimal solution to FRACTIONAL VERTEX COVER into an
half-integral optimal solution to it.

Corollary 11.14. There is an algorithm which returns a 2-approximate solution to VERTEX
COVER in polynomial time.
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Proof. The algorithm is very simple. We first solve FRACTIONAL VERTEX COVER and derive
an half-integral optimal solution y/ to it. Define y by y, = 1 if and only if y{ € {1/2;1}. Clearly,
y is an admissible solution of VERTEX COVER. Moreover, by definition

Y w<2Y v =2v/(G)<2-v(G).

veV veV

O

No better constant-factor approximation algorithm than the above one is known. The mini-
mum vertex cover problem is APX-complete, that is, it cannot be approximated arbitrarily well
unless P = A'P. Using techniques from the PCP theorem, Dinur and Safra [7] proved that
VERTEX COVER cannot be approximated within a factor of 1.3606 for any sufficiently large
vertex degree unless P = AP. Moreover, if the unique games conjecture is true, then VERTEX
COVER cannot be approximated within any constant factor better than 2 as shown by Khot and
Regev [18].

Analysing in more details relations between the solutions of FRACTIONAL VERTEX COVER
and those of VERTEX COVER, we can find a kernelization of the following parameterized ver-
sion of the vertex cover problem.

Problem 11.15 (PARAMETERIZED VERTEX COVER).
Instance: a graph G and an integer k.
Parameter: k.
Question: does G have a vertex cover of cardinality at most k ? In other words, v(G) < k?

In the area of parameterized algorithms, one of the major issue is to determine if a problem is
FPT (for Fixed-Parameter Tractable), that is if it can be solved by an algorithm in time f(k)P(n)
with f an arbitrary function in k and P a polynomial in n, the number of vertices of G. One of
the possible ways to do so, is to prove that there exists a g(k)-kernelization for some function
g(k), that is a polynomial-time algorithm that transforms any instance (G, k) of the problem into
an equivalent instance (G’,k’) such that |G'| < g(k) and k¥’ < k. Once we know that a problem
admits a kernelization, a second issue is to find the minimum function g for which it has a
g(k)-kernelization.

In the remaining of this subsection, we shall prove that PARAMETERIZED VERTEX COVER
has a 2k-kernelization.

Let y/ be a half-integral optimal solution to FRACTIONAL VERTEX COVER. For r €
{0,1/2,1}, set Vi = {v e V |y} =1}, G, = G(Vy).

Theorem 11.16 (Nemhauser and Trotter [23] ). Let y/ be a half-integral optimal solution to
FRACTIONAL VERTEX COVER. Then there exists a minimum cover S of G such that:

(a) VonS=0;
(b) Vi CS.

Proof. We present here a proof due to Khuller [19]. Let us first show that (a) implies(b).
Suppose that there exists v € V; \ S.
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e If v has no neighbour in V), then one can decrease the weight y{ at v to obtain a fractional
vertex cover of G with smaller weight, a contradiction to the minimality of y/.

e If v has a neighbour w in Vj, then by (a) w is not in § so vw is not covered by S, a
contradiction.

Let us now prove (a).
Let S be a minimum vertex cover which has the fewest vertices in Vy. Suppose for a contradic-
tion that SNV # 0. Observe that Vj is a stable set because yf is a fractional vertex cover. Also
there is no edges between Vp \ S and V; \ S. Suppose moreover that (Vo N S| < [Vi\ S|. Then
we can increase y{ of some tiny € for all v € VyN S and decrease y, of € for all v € V; \ S. This
results in a fractional vertex cover of G with weight less than the one of y/, a contradiction.

Hence we have [VyN S| > |Vi \ S|. Thus (S\ Vp) UV is a vertex cover of G with at most as
many vertices as S and no vertex in Vp. O

Corollary 11.17. PARAMETERIZED VERTEX COVER has a 2k-kernelization.

Proof. The kernelization algorithm is the following.

Algorithm 11.1.
1. Find an optimal solution y/ to FRACTIONAL VERTEX COVER.
2. If the weight of y/ is greater than k, then return a ‘No’-instance.
3. If [Vi| = k and V; /, = 0, return a ‘Yes’-instance.

4. Otherwise return (G, k — |V1).

This algorithm clearly runs in polynomial time. In addition, by Theorem 11.16, G has a
vertex cover of cardinality at most & if and only if G/, has a vertex cover of cardinality at most
k—|Vy|.

The trivial instances returned at Steps 2 or 3 being trivially of size at most 2k, it remains to
prove that the graph G/, has order at most 2k. But because of Step 2,

1
k>vI(G) > Y vl =2 [Vi ol + V1]
veV 2

s0 Vi o] <2(k— V1)) O

11.3 Randomized rounding

11.3.1 Maximum satisfiability

There is a natural optimization version of the Boolean Satisfiability Problem (SAT) (Prob-
lem 3.5). Given a Boolean formula F in conjunctive normal form and a non-negative weight w;
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associated with each clause C;, the objective is to find a Boolean assignment to the variables that
maximizes the total weight of the satisfied clauses. This problem, called MAX SAT, is clearly
NP-hard.

Johnson [17] demonstrated a simple %—approximation algorithm. It is based on the following
simple random assignment: set each variable uniformly at random to true or false, indepen-
dently from the other variables. Let |C;| denote the number of literals in clause C;. It is easy to
check that

p1(Ci) = Pr(C; is satisfied) = 1 — 27161,

Hence, the expected weight of clauses satisfied by this random assignment is
1
EW) =Y wi(1-2716 < 2 ¥ w;.
(W) ;Wl( ) < 3 ;w,

The probabilistic method specifies that there must exist a truth assignment whose weight is at
least this expected value. In fact, the method of conditional probabilities (See Chapter 15 of
[1]) can be applied to find such assignment deterministically in polynomial time. In the method
of conditional probabilities, the value for thr ith variable is determined in the ith iteration: given
the values of xp,...,x;_ calculate the expected weight of clauses satisfied by the probabilistic
assignment, given the current assignment to x,...,x;—; and the assignment x; = 1. Then cal-
culate the expected weight given the assignment to xi,...,x;—1 and x; = 0. The variable x; is
assigned the value that maximizes the conditional expectation. Since each conditional expecta-
tion can be calculated in polynomial time, the overall algorithm takes polynomial time, and as
asserted above, the produced assignment has weight at least E(W).

Observe that the above algorithm is also a (1 —2~%)-approximation algorithm when each
clause contains at least k literals. In particular, if k > 2, the performance guarantee is at least %.
A general %—approximation algorithm was proposed by Yannakakis [26]. This algorithm trans-
forms a MAX SAT instance into an equivalent instance (in terms of approximability) which
does not contain any clauses with only one literal. In conjunction with Johnson’s algorithm,
this leads to the performance guarantee of 3/4. The algorithm uses maximum flow calculation
in an elegant way to transform instance in which all clauses have two literals. However, the
transformation becomes more complicated when general clauses are introduced. In the next
paragraph, we describe a simpler algorithm due to Goemans and Williamson with the same
approximation ratio [12]. Asano[3] gave a polynomial-time algorithm with the better approx-
imation ratio 0.77. On the opposite, Hastad [14] proved that, unless AP = P, the MAX SAT
problem cannot be approximated in polynomial time within a ratio greater than 7/8.

Goemans—Williamson algorithm

The idea is to consider two different randomized procedures for constructing the Boolean as-
signment, and observe that they have complementary strengths in terms of their approximation
guarantees. The first one is Johnson’s algorithm and thus works well when each clause has
‘many’ literals. The second one will be good if each clause has ‘few’ literals. Thus, we could
run both and take the better solution; in particular, we could choose one of the two schemes
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uniformly at random, and the expectation of the value of the resulting solution will be the arith-
metic mean of the expected values of the solutions of the two procedures.

Let us now present and analyze the second procedure. It starts with an integer linear pro-
gramming formulation. For each clause C;, let P(i) denote the set of unnegated variables ap-
pearing in it, and N(i) be the set of negated variables in it. For each variable j, let x; = 1 if
this variable is set to true, and x; = 0 if the variable is set to false. Letting z; € {0,1} be the
indicator for clause C; getting satisfied, we obtain the following formulation.

Maximize ) ;w;z; subjectto:
(11.16)
zi < Yjepi)Xj+Yjen)(1—x;)  forall variable i
We first solve fractional relaxation of (11.16) obtained by relaxing each x; and z; to be a
real in [0, 1] and consider a optimal solution (x/,z/) of it. We interpret each xf as a probability.
Thus, our randomized rounding process will be, independently for each j, to set x; =1 (i.e.,
make variable j true) with probability x; and x; = 0 (make variable j false) with probability
1— xj One intuitive justication for this is that if xj were ‘high’, i.e., close to 1, it may be taken
as an indication by the linear programme that it is better to set variable j to true; similarly for
the case where x; is close to 0.
Let us lower-bound the probability of clause C; getting satisfied. Without loss of generality,
we can assume that all variables appear unnegated in C;. Thus, we have
2/ =min{s/, 1} with s/ = ¥ /.

J
JeP(i)

It is not hard to check that Pr(C; is satisfied) = 1 —[];ep(;) (1 — xf ) is minimized when each xf
equals slf /|Cil|. Thus

o ICil o ICil
»(C;) = Pr(C; is satisfied) > 1— [ 1 — = >1—(1-2L .
p ( l) ( l ) ( ‘Cl‘ ‘Cl‘

For a fixed value of zlf , the term 1 — (1 — z{ /|Ci|)/€1 decreases monotonically as |C;| increases.
This is the sense in which this scheme is complementary to Johnson’s.

So, as mentioned above, suppose we choose one of the two schemes uniformly at random,
in order to balance their strengths. Then,

. 1
Pr(C; is satisfied) = E(Pl (C)+p2(C))
1/ i )
> 1 (2 |Ct|+(1—z{/|c,-|)‘cf‘)
3.f
2 7%

because z/ € [0, 1]. Indeed for any fixed positive integer k, fi(z) = 1 (2% + (1 — z/k)¥) — % has
a non-positive derivative for z € [0, 1]. Thus, it suffices to show that f;(1) > 0 for all positive
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integer k. We have f1(1) = f2(1) =0. Fork>3,2"k<1/8and (1 —1/k)* <1/e. So fi(1) >0
for k > 3.

Thus the expected value of of the produced assignment is at least 3/4 of the optimal value
of the fractional relaxation of (11.16), and so at least at least 3 /4 of the optimal value of (11.16)
itself.

The method of conditional probabilities may also be used to derandomized the second pro-
cedure and thus to get a deterministic %—approximation algorithm for MAX SAT.

11.3.2 Multiway cut

Let (G, p) be an edge-weigthed graph and let sy, ..., s be k vertices called terminals si,. .. ,sk.
An (s1,...,8;)-cut is a partition IT = (Vi,...,V;) of V such that s; € V; for all 1 <i <k. This
notion generalizes the one of (s,7)-cut defined in Section 7.3 and Subsection 11.2.1.

Let IT= (V1,...,V}) be a partition of G. An edge e is I1-transversal if its endvertices are in
different parts. In other words, e = uv, u € V;, v € V; and i # j. The set of transversal edges of
ITis denoted E(IT). The weight of a cut IT is the sum of the weights of the IT-transversal edges:
w(Il) = Z w(e).

ecE(II)
The MULTIWAY CUT problem is the following:

Problem 11.18 (MULTIWAY CUT).
Instance: an edge-weighted graph (G,w) and k vertices sy, ..., Sk.
Find: an (s1,...,st)-cut of minimum weight.

For k = 2, it is the problem of finding a minimum-weight (s,)-cut which can be solved in
polynomial time as we saw in Chapter 7 and in Subsection 11.2.1.

For k > 3, the problem is A P-hard [6]. But, it can be approximated in polynomial time.
As shown by Dalhaus et al. [6], one can obtain a 2 — %—approximated solution for MULTIWAY
CUT by running k times the algorithm for finding a minimum-weight (s,#)-cut. Indeed, for all i,
consider the graph G; obtained from G by identifying the s;, j # i in one vertex #; and find a
minimum-weight (s;,#;)-cut C; in G;. Then each C; separates s; from all other s; in G. Hence the
union of the k — 1 cuts C; with smallest weight is an (sy,...,s)-cut with weight at most 2 — %
times the minimum weight of an (sy,...,s;)-cut. See Exercise 11.13.

A 3/2-approximation algorithm

Given an (s1,...,s¢)-cut (Vi,...,Vy), for each vertex v, we consider the vector x, whose ith
coordinate is 1 if v € V; and O otherwise. Clearly, v € V; if and only if x, = e;, where e; the
‘th

vector, all coordinates of which are 0 except the i~ which is 1. Hence there is a one-to-one
correspondence between the vectors x in {e; | 1 <i < k}!V| such that x;, = ¢; for 1 <i < k and
the (s1,...,s¢)-cuts. To each x corresponds the cut (Vi,...,V;) defined by V; = {v | x, = ¢;}.
Because such an x is a vector of vectors of IR, for convenience we denote by x(i) the ith
coordinate of a vector x € R,
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Let x be the vector corresponding to an (sy,...,s)-cut IT = (Vi,...,V;). Consider an edge
uv. If uv is not I-transversal, then there exists i such that x, = x, = e;, 50 YX_, |x, (i) —x,(i)| = 0.
If uv is Il-transversal, then there exist distinct integers i and j such that x, = e; and x, = ¢}, so
YX | . (i) = x,(i)| = 2. Hence MULTIWAY CUT may be formulated as follows.

Minimize Y,,cg()w(uv)d(uv) subjectto:

duw) = X (i) —x ()] (11.17)
x € He|1<i<k} forallve V\{vi,...,w}
Xy, = e forl1 <i<k

1

This is an integer linear programme, because Equation (x) can be replaced by following linear
inequalities.

1 .

d(uv) = EZ)CW(Z)
xy(i) forall 1 <i<k
x,(i) forall 1 <i<k

xuv(i) > xu(i)
Xuv (i) 2 x (i)
Observe that (11.17) is a generalization of (11.13).
Let Ay, be the set of vectors of RF whose coordinates are non-negative and sum to 1. In other

words, Ay = {x | ¥*_, x(i) = 1 and x(i) > 0,for alll <i < k}. One can relax (11.17) into the
following linear programme.

Minimize Y,,cg () w(uv)d(uv) subjectto:

duwv) = I¥5 | |x() —x(i))| (11.18)
X, € A forallve V\{vy,...,}
Xy, = e forl1 <i<k

1

For any solution x of AZ(G), we denote by S, () or simply S(x) the value ¥, g () w(uv)d (uv).

The idea of the approximation algorithm is to first find an optimal solution x of (11.18), and
then to derive from this solution an (s,...,s;)-cut whose weight is at most (3/2 — 1/k)S(x),
and so at most (3/2 — 1/k) times the minimum weight of an (s, ..., s¢)-cut.

In order to derive a multiway cut from the solution, we first transform the edge-weighted
graph (G, w) and the solution x into an edge-weighted graph (G*,w*) and an admissible solution
(G*,w") to its associated (11.18) such that

@) SGw) (x) = S(G*’W*)(x*), and
(ii) for all edge uv € E(G*), the vectors x};, and x}; differ in at most 2 coordinates.

It is easy to see that such (G*,w*) and x* can be obtained by running the following algo-
rithm.
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Algorithm 11.2.
1. (G*,w*):=(G,w) and x :=x*.
2. While there is an edge uv such that x}, and xj differ in m > 2 coordinates, do

— Subdivide the edge uv, that is replace the edge uv by two edges uw and wv (where w
is a new vertex) with weight w*(uw) = w*(vw) = w*(uv).

— Choose a vector x;, which differs to xj, in exactly two coordinates and which differ to
X} in fewer than m coordinates.

Let us make few observations that can be easily proved.

Observation 11.19. 1) G* is a subdivision of G and each time we subdivide an edge uv into
(u,w,v), we have d(uv) = d(uw) +d(wv).

) IFIT = (Vf,..., V) is an (s1,...,8¢)-cut in G*, then the (sy,...,s¢)-cut IT= (Vq,..., Vi)
in G, defined by V; =V NV(G) for all 1 <i < k has weight no greater than the one of IT*:
w(IT) < w*(IT").

We now describe a polynomial-time (3/2 — 1/k)-approximation algorithm for MULTIWAY
CUT due to Calinescu et al. [S]. It first find an optimal solution of (11.18) and then deduce an
admissible solution of the Multiway Cut Problem.

Let us introduce some notation. For all 1 < i <k, let E; be the set of edges uv of G* such
that xj; and x; differ in the ith coordinate and let W;* = Y ,cg. w*(e)d(e). Finally, for p € [0,1]
and 1 <i<1,let B(s;,p) be the set of vertices of G* such that the ith coordinate of x is at least
p. Observe that if p > 1/2, then for i # j we have B(s;,p) N B(s;,p) = 0.

Algorithm 11.3 (Multiway Cut Approximation).
1. Find an optimal solution x to (11.18).
2. Run Algorithm 11.2 to obtain (G*,w*) and x*.
3. Renumber so that W = max{W;" | 1 <i <k}.

4. Choose p at random in [0, 1] and choose uniformly at random a permutation ¢ among the
two (1,2,....,k—1,k) and (k—1,k—2,...,1,k).

5. Fori=1ltok—1,V5, = B(si,p) \ Uj<iVs()-

7. Return the cut IT= (V;,..., Vi), where V; = VNV (G).
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This algorithm is randomized but it can be derandomized.

We shall now show that Algorithm 11.3 returns a (% — %)—approximated solution to the Mul-

tiway Cut Problem, that is E(w(IT)) < (3 — £)w(IL,) with I, a minimum-weight (s1, .. ., s¢)-
cut.
Since S(g« ) (X*) = S(G,w) (X) < w(Ilypr) and w(Il) < w*(IT*), it is sufficient to prove

E(w'(IT')) < (;—}C)s( (%) (11.19)

Lemma 11.20. Let e be an edge of G*.
(i) If e € E(G*) \ Ey, then Pr(e is IT*-transerval) < 3d(e).
(ii) If e € Ey, then Pr(e is IT*-transerval) < d(e).

Proof. (i) Let e = uv and let i and j be the two coordinates in which x], and x;, differ.

Without loss of generality, we may assume that x;(7) < xj(i). Since x], and xj differ in
exactly two coordinates and the sum of the coordinates of each of these vectors equals 1, we
have x}; (i) —x; (i) = x}5(j) — x5 (j). In particular, x};(j) > x5 ().

Let us define B = [x; (j),x; ()] and A = [x; (i),x; ()] if x5()) < x5(j) and A = [¢}(i),x3()]
otherwise.

Claim 11.20.1. If p ¢ AUB, then u and v are in the same part.
Proof. 0

Clearly, Pr(p € AUB) = |A| +|B| < 2d(e). This would be sufficient to show E(w*(IT")) <
28(G+ ) (X*), but we want to prove that the solution is (3/2 — 1/k)-approximate.

Claim 11.20.2. If p € A and 6(j) < ©(i), then u and v are in the same part.
Proof. O

But Pr(p € A and 6(j) < o(i)) =Pr(p € A) x Pr(c(j) < o(i)) = d(e)/2 because the two
events ‘p € A” and ‘c(j) < o(i)’ are independent. Thus Pr(e € E(IT*)) < Pr(p € AUB) —

Pr(p € A and 6(j) < o(i)) < 3d(e). O
Finally,
Ew'(IT") = ) w'(e)Pr(ecE(IT")) < ) w*(e)d(e)—l—% Y, wie)d(e)
e€E(G*) ecky e€E(G*)\Ey
301 . .
< (3%) L v@d0=50u )

The last inequality holds because W = max{W; | 1 <i <k} > 1 ¥ cxw*(e)d(e).
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11.4 Graph colouring

Let G = (V,E) be a graph. We denote by S(G), or simply .S, the set of stable sets of G and
S(G,v), or simply S(v), the set of all those stable sets which include vertex v. Finding the
chromatic number % (G) of a graph G may then be formulated as an integer linear programme:

Minimize Z Xs
Ses

Subject to:
Y >1  forallveV(G) (11.20)
ses(v)

xs€{0,1} forallSes

The fractional chromatic number of G, denoted % 7(G), is the optimal value of the fractional
relaxation of (11.20). By the Duality Theorem, the fractional chromatic number is equal to the
optimal solution of

Maximize Z Yy
veV(G)
Subject to: (11.21)
Y w<1 forallSeS(G)

ves
»w=>0 forallveV

The feasible points of this dual linear programme are often called fractional cliques, the
reason being that every integral feasible point (i.e., (0, 1)-vector) identifies a clique of the graph
considered. This maximization problem is henceforth called the fractional clique problem.
Despite this pleasing result, it is still NP-hard to compute the fractional chromatic number of a
graph: the number of constraints can be exponential in the size of the graph. In fact, it is even
difficult to approximate the fractional chromatic number of graphs with n vertices to within a
factor of n'/7~¢ for any positive € [2].

The fractional chromatic number may be a bad estimate for the chromatic number as the
gap between those two numbers may be arbitrarily large. An interesting example of graphs for
which there is a large gap between the chromatic number and the fractional chromatic number
is provided by the family of Kneser graphs, which we now define.

For any two positive integers k and n with k < n, the Kneser graph KG, is the graph whose
vertices are identified with the k-subsets of {1,---,n} and such that two vertices are adjacent
if and only if the corresponding sets are disjoint. KGj, | is the complete graph K,,, which has
chromatic and KGs is the Petersen graph, for which x(Ks>) = 3. The graph KGo—1 x has
no edges, and so chromatic number 1, whereas KGy; x consists of a perfect matching, and
hence % (KGaix) = 2 for all k > 1. Note that KG(n, k) is vertex-transitive. Hence its fractional
chromatic number is |V (KG(n,k)|/a(KG(n,k)) = n/k. See Exercise 11.14.

Proposition 11.21. For all k > 1 and n > 2k, the fractional chromatic number of the Kneser
graph KGy is §.
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Theorem 11.22 (Lovasz [21]). For all k > 1 and n > 2k — 1, the chromatic number of the
Kneser graph KG i is X(KGpnx) =n—2k+2.

The proof of this theorem is one of the first graph theoretic results obtained by topological
means. We refer the reader interested in such methods to the excellent monograph by Ma-
tousek [22]. The short proof that we present next is due to Greene [13]. It uses one of the many
versions of the Borsuk-Ulam Theorem, known as the Generalized Lyusternik Shnirel’man The-
orem.

Theorem 11.23 (Greene [13]). For any cover A1,As,...,A,+1 of the n-dimensional sphere S"
by n+ 1 sets, each A; open or closed, there is at least one set A; containing a pair of antipodal
points (i.e. {x,—x} € A;).

Proof of Theorem 11.22. Set d :=n —2k+ 1. Let X C S? be an n-point set such that no hy-
perplane passing through the center of S¢ contains more than d points of X. This condition is
easily met by a set in a suitably general position, since we deal with points in IR?*! and require
that no d + 1 of them lie on a common hyperplane passing through the origin.

Let us suppose that the vertex set of KG,  is the set (),f) of the k-subsets of X (in other
words, we identify the elements of {1,...,n} with the points of X).

Consider a d-colouring ¢ of KG,, ;. We shall prove that ¢ is not proper. For x € S?, let H(x)
be the open hemisphere H (x) centered at x, that is, H(x) = {y € S¢ | {x,y) > 0}. We define sets
Al,...,A; C $9 as follows. A point x € S? is in A; if and only if there is at least one vertex
F e (),g) of colour i contained in H(x). Finally, we set Ay, 1 =S¢\ (AjU---UAy). Then, A;
is an open set for each i € {1,---,d}, while Ay is closed. By Theorem 11.23, there exists
i€{l,...,d+1} and x € S¢ such that both x and —x belong to A;.

Suppose first that i = d + 1. Then H(x) contains at most k — 1 points of X, and so does
H(—x). Therefore, the complement S¢\ (H(x) UH(—x)), which is an “equator”, (that is, the
intersection of S? with a hyperplane through the origin), contains at least n — 2k +2 = d + 1
points of X. This contradicts the choice of X.

Hence i < d. So we obtain two disjoint k-tuples coloured i, one in the open hemisphere
H (x) and one in the opposite open hemisphere H(—x). Consequently, ¢ is not proper. O

11.5 Exercises

Exercise 11.1. Formulate the Travelling Salesman Problem as an integer linear programme.
Exercise 11.2. Formulate the Hamiltonian Cycle Problem as an integer linear programme.
Exercise 11.3. Show that u7(Coxy1) =k+1/2.

Exercise 11.4. Show that if G is bipartite, then (11.4) has an integral optimal solution.

Exercise 11.5. Let G be a graph and let A be its incidence matrix. Prove that A is totally
unimodular if and only if G is bipartite.
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Exercise 11.6. Prove that the matrix [I,A’] of (11.8) is totally unimodular.

Exercise 11.7. Recall that a stable set in a graph is a set of pairwise non-adjacent vertices, and
that an edge cover of a graph G is a set of edges F C E(G) such that every vertex v € V(G) is
incident to at least one edge of F.

Let G be a graph.
1) Formulate the problems of finding a maximum stable set and finding a minimum edge cover
in G as integer linear programmes.
2) Show that the fractional relaxation of these programmes are dual.
3) Deduce the Konig—Rado Theorem: In any bipartite graph without isolated vertices, the
number of vertices in a maximum stable set is equal to the number of edges in a minimum edge
cover.

Exercise 11.8. Let D be a digraph.

1) Show that a non-negative circulation in D is a non-negative linear combination of circulation
associated with directed cycles.

2) Show that a non-negative integral circulation in D is a non-negative integral linear combina-
tion of circulation associated with directed cycles.

Exercise 11.9 (Hoffman’s circulation theorem). Let D = (V, E) be a directed digraph and let d
and ¢ be two weight function on the arcs of D such that d(e) < ¢(e) for each arc e. Consider the
problem of finding a circulation f such that d(a) < f(a) < c(a) for every arc e.

1) Model this problem as a linear programmme involving the incidence matrix A of D.

2) Deduce from the total unimodularity of A Hoffman’s circulation theorem: There exists a
circulation f such that d(e) < f(e) < c(e) for every arc e if and only if for every subset U of V,

Y dleg< )Y cle).

ccEVNUU)  ecEUV\U)
Recall that E(A, B) denotes the set of arcs with tail in A and head in B.
Exercise 11.10. Show that the matrix corresponding to (11.14) is not totally unimodular.

Exercise 11.11. Show that the fractional relaxation and a simple rounding yields a 2-approximate
algorithm toMAXIMUM MATCHING.

Exercise 11.12. Show that every integer feasible solution x to the linear programme (11.5)
satisfies the inequality
1
Z Xe < E(IX‘_U
e€E(X)
for any odd subset X of V of cardinality three or more.

([8] showed that, by adding these inequalities to the set of constraints in (11.5), one obtains a
linear programme every optimal solution of which is (0, 1)-valued.)
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Exercise 11.13. Let sy,...,s; be k vertices of an edge-weighted graph (G,w). For all i, con-
sider the graph G; obtained from G by identifying the s;, j 7 i in one vertex #; and let C; be a
minimum-weight (s;,)-cut in G;. Assume moreover that w(Cy) > w(C;), for all i.

Show that U{-le C;isan (sy,...,s;)-cut with weight at most 2 — % times the minimum weight
of an (sy,...,s;)-cut.
Exercise 11.14.
V(G|
1) Show that for every graph G, x(G) > %(G)
o . _ V(G
2) Show that if G is vertex-transitive, then ¥ 7(G) = %(G)

3) Decuce that X (KGpx) = %
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