Herative Methods for Solving Learr-squares
When A has foll column rank, our L.S. estimate is

$$
\hat{x}=\left(A^{\top} A\right)^{-1} A^{\top} y
$$

If A is $M \times N$, then constructing $A^{\top} A$ $\cos B \quad O\left(M N^{2}\right)$ computations, and inverting $A^{\top} A$ $\cos B \quad O\left(N^{3}\right)$ computations. (Note Nat for $M>N$, The cost of constructing the matrix is actually larger than inverting iT.)
This is a problem for even moderately lame M and N. But inverse problems with large $M \not \equiv N$ are common in the modem world.

Typical 3D MRI scan:
Reconstruct a $128 \times 128 \times 128$ cube of voxels from $\approx 5.10^{6}$ Fourier-domain samples $N \approx 2.1$ million, $M \approx 5$ million

It takes about .25 seconds for me to construct $A^{\top} A$ and solve $A^{\top} A x=A^{\top} y$ when

$$
M=5000, \quad N=1000
$$

How long would it tate (approx) for the example above? $(M=5,000,000 \quad N=2,000,100)$

How much memory would you need to hold A (assume double precision $=8$ byres per aunty)?

In this section, we will overview two iterative methods - steepest descent \$ conjugate gradients - That reformulate

$$
A^{\top} A x=A^{\top} y
$$

as an oprimization program. Each iteration is simple, and requires one application of A \$ one application of A^{\top}. If $A^{\top} A$ is well conditioned, they can converge in very few iterations (especially (G). This makes the cost of solving this type of L.S. problem dramatically smaller - about the cost of a few to a couple hundred applications of A.
Moreover, we don't need to consmuct $A^{\top} A$ or even A explicitly, all we need is a "black box" which takes a vector x and returns $A x$. This is especially useful if it takes $\ll 0(M N)$ time to apply A or A^{\top}

In the MRI example above, it takes about 30 seconds to apply A or A^{\top} using a unequispaced FFT. CG (which we will (earn about soon) converges in about 50 iterations \Rightarrow the problem is solved in ≈ 50 minutes. Also, the storage requirements are $O(\mu+N)$.

Recasting as an optimization program
We want to solve

$$
\underbrace{A^{\top} A} x=\underbrace{A^{\top} y}
$$

or $\quad H x=b \quad H: N K N$
Note H is symmetric + bet (if A has full column rank).
Since H is symutdet, then the solution \hat{x} to

$$
\min _{x \in \mathbb{R}^{N}} \frac{1}{2} x^{\top} H x-x^{\top} b \quad(Q P)
$$

will saristy $H \hat{x}=b$.

Why? Well, if H is sym+let, then (QP) is convex (smictly convex, actually). Thus a necessary and sufficient condition for \hat{x} to be the minimizer is

Since

$$
\begin{aligned}
\nabla_{x}\left(\frac{1}{2} x^{\top} H x-x^{\top} b\right) & =\frac{1}{2} \nabla_{x}\left(x^{\top} H x\right)-\nabla_{x}\left(x^{\top}\right) \\
& =H x-b
\end{aligned}
$$

the solution to (QP) must have

$$
H \hat{x}=b
$$

Steepest Descent
Say you have an unconsmined optimization program

$$
\min _{x \in \mathbb{R}^{N}} f(x)
$$

Where $f(x): \mathbb{R}^{N} \rightarrow \mathbb{R}$ is convex. One way to solve this program is to simply "roll downhill".
That is, from a starting point x_{0} we move to

$$
x_{1}=x_{0}-\left.\alpha_{0} \cdot \nabla f(x)\right|_{x=x_{0}}
$$

then to

$$
\begin{aligned}
x_{2} & =x_{1}-\left.x_{1} \nabla f(x)\right|_{x=x_{1}} \\
& \vdots \\
x_{k} & =x_{k-1}-\left.\alpha_{k-1} \nabla f(x)\right|_{x=x_{k-1}}
\end{aligned}
$$

for some appropriate $\alpha_{1}, \alpha_{2}, \ldots ; \alpha_{k}>0$.
At each iteration we are moving in the direction $-\nabla f\left(x_{k}\right) ;$ this is the direction of "steepest descent".
from Jonathan Richard Shewchuk "Intro to CG _1

For our problem

$$
\min _{x} x^{\top} H x-x^{\top} b
$$

the gradient is simply the residual

$$
-\left.\nabla\left(x^{\top} H x-x^{\top} b\right)\right|_{x=x_{k}}=b-H x_{k}=: r_{k}
$$

and so the iteration becomes

$$
x_{k+1}=x_{k}+\alpha_{k} r_{k}
$$

There is a nifty way to choose an optimal value for the α_{k}. We want to choose α_{k} so That $f\left(x_{k+1}\right)$ is as small as possible. Along the ray $x_{k}+\alpha_{k} r_{k}, f\left(x_{k}+\alpha_{k} r_{k}\right)$ is again convex (in $\left.x_{k}\right)$ so we want

$$
\frac{d}{d \alpha_{k}} f\left(x_{k}+\alpha_{k} r_{k}\right)=0
$$

By the chain rue

$$
\begin{aligned}
\frac{d}{d x_{k}} f\left(x_{k+1}\right) & =\nabla f\left(x_{k+1}\right)^{\top} \frac{d}{d x} x_{k+1} \\
& =\nabla f\left(x_{k+1}\right)^{\top} r_{k}
\end{aligned}
$$

so we need to choose α_{k} such That

$$
\nabla f\left(x_{k+1}\right) \perp r_{k}
$$

or more concisely

$$
r_{k+1} \perp r_{k} \quad\left(r_{k+1}^{T} r_{k}=0\right)
$$

So let's do this:

$$
\begin{aligned}
& r_{k+1}^{\top} r_{k}=0 \\
\Rightarrow & \left(b-H x_{k+1}\right)^{\top} r_{k}=0 \\
\Rightarrow & \left(b-H\left(x_{k}+\alpha_{k} r_{k}\right)\right)^{\top} r_{k}=0 \\
\Rightarrow & \left(b-H x_{k}\right)^{\top} r_{k}-\alpha_{k} r_{k}^{\top} H r_{k}=0 \\
\Rightarrow & r_{k}^{\top} r_{k}-\alpha_{k} r_{k}^{\top} H r_{k}=0 \\
\Rightarrow \quad & \alpha_{k}=\frac{r_{k}^{\top} r_{k}}{r_{k}^{\top} H r_{k}}
\end{aligned}
$$

So the steepest descent algorithm is

- Initialize $x_{k}=$ some guess, $k=0$
- while not coverged

$$
\left[\begin{array}{l}
r_{k}=b-H x_{k} \\
\alpha_{k}=r_{k}^{\top} r_{k} / r_{k}^{\top} H r_{k} \\
x_{k+1}=x_{k}+\alpha_{k} r_{k} \\
k=k+1
\end{array}\right.
$$

Notice that

$$
\begin{aligned}
r_{k+1}=b-H x_{k+1} & =b-H\left(x_{k}+\alpha_{k} r_{k}\right) \\
& =r_{k}-\alpha_{k} H r_{k}
\end{aligned}
$$

So we can save an application of H using
Initialize $\quad k=0$
$x_{0}=$ some guess

$$
r_{0}=b-H x .
$$

while nor converged

$$
\left[\begin{array}{l}
q=H r_{k} \\
\alpha_{k}=r_{k}^{\top} r_{k} / r_{k}^{\top} q \\
x_{k+1}=x_{k}+\alpha_{k} r_{k} \\
r_{k+1}=r_{k}-\alpha_{k} q
\end{array}\right.
$$

The effectiveness of S.D. depends critically on how H^{\prime} is condirived and the starring point

From shaschuk:

The conjugate gradient (CG) method
An excellent resource for the material in this section is
J. Shewchuk: "An introduction to the conjugate gradient method without the agonizing pain"
We can see from the example on the last page that steepest descent is sometimes inefficient because it can move in essentially the same direction many times.
CG avoids this by ensuring that each step is $\frac{1}{1}$ (in an appropriate inner product) to all of the previous steps that have been taken.
Consider the general iteration

$$
x_{k+1}=x_{k}+\alpha_{k} \cdot d_{k} \underbrace{}_{\substack{\text { direction to move } \\ \text { © } k=y \\ \text { iteration }}}
$$

What wed like is to choose x_{k} so that

$$
e_{k+1}=x_{k+1}-x
$$

the error at iteration $k+1$ is orinogomal to the direction d_{k}. This word mean (thanks to the 1 -principle) that we are oprimally aligned with x (the tire solution) along the direction d_{k}. Then if $d_{0}, d_{1}, \ldots, d_{N-1}$ is a set of 1 dirations we would only need to move in each exactly once.

We would like α_{k} s.t.

$$
d_{k} \perp e_{k+1} \text { i.e. }\left\langle d_{k}, e_{k+1}\right\rangle=d_{k}^{\top} e_{k+1}=0
$$

So we would reed

$$
\begin{aligned}
& d_{k}^{\top}\left(x_{k}+\alpha_{k} d_{k}-x\right)=0 \\
\Rightarrow & d_{k}^{\top}\left(e_{k}+\alpha_{k} d_{k}\right)=0 \\
\Rightarrow & \alpha_{k}=-\frac{d_{k}^{\top} e_{k}}{d_{k}^{\top} d_{k}}
\end{aligned}
$$

This is fine, except we have no idea what e_{k} is (it we did, we could solve the entire problem instantly).

What we can do is choose the α_{k} such that d_{k} is $H-\perp$ to e_{k+1}. That is,

$$
\left\langle d_{k}, e_{k+1}\right\rangle_{H}=d_{k}^{\top} H e_{k+1}=0
$$

(Recall that it It is an $N \times N$ sym+det matrix, then $\langle x, y\rangle_{H}=x^{\top} H y$ is a valid inner product on \mathbb{R}^{N}.)
We need

$$
\begin{aligned}
& d_{k}^{\top} H\left(x_{k}+\alpha_{k} d_{k}-x\right)=0 \\
\Rightarrow & d_{k}^{\top} H e_{k}+\alpha_{k} d_{k}^{\top} H d_{k}=0 \\
\Rightarrow & \alpha_{k}=\frac{-d_{k}^{\top} H e_{k}}{d_{k}^{\top} H d_{k}}
\end{aligned}
$$

Notice that

$$
\begin{aligned}
& \text { ice that } \\
& H e_{k}=H\left(x_{k}-x\right)=H x_{k}-b=-r_{k}
\end{aligned}
$$

which we definitely know, so we could take

$$
\alpha_{k}=\frac{d_{k}^{\top} r_{k}}{d_{k}^{\top} H d_{k}}
$$

So given a set of $H-1$ search directions $d_{0}, d_{1}, \ldots, d_{N-1}, \quad\left\langle d_{i}, d_{j}\right\rangle_{H}=0 \quad i \neq j$
We could implement the following
Initialize $x_{0}=$ some guess
for $k=0$ to $N-1$

$$
\left[\begin{array}{l}
r_{k}=b-H x_{k} \\
\alpha_{k}=d_{k}^{\top} r_{k} / d_{k}^{\top} H d_{k} \\
x_{k+1}=x_{k}+x_{k} d_{k}
\end{array}\right.
$$

This procedure would converge to the exact solution after the $N^{\text {th }}$ step (more on This later). All we need now is a set of $H-\perp$ direction vectors d_{j}. The beauty of $C G$ is that it generates these directions "on the $f l y$ " by running what is essentially Gram-Schmidt.

Here is the $C 6$ algorithm:
Initialize $\quad X_{0}=$ some guess

$$
\begin{aligned}
& \hat{r}_{0}=b-1+x_{0} \\
& d_{0}=r_{0}
\end{aligned}
$$

for $k=0$ up oo $N-1$

$$
\left[\begin{array}{l}
\alpha_{k}=r_{k}^{\top} r_{k} / d_{k}^{\top} H d_{k} \\
x_{k+1}=x_{k}+\alpha_{k} d_{k} \\
r_{k+1}=r_{k}-\alpha_{k} H d_{k} \\
\beta_{k+1}=r_{k+1}^{\top} r_{k+1} / r_{k}^{\top} r_{k} \\
d_{k+1}=r_{k+1}+\beta_{k+1} d_{k}
\end{array}\right.
$$

(We will show below that $r_{k}^{T} r_{k}=r_{k}^{\top} d k$, so the α_{k} really is the same as before.) These choices of α_{k} and β_{k+1} are ensuring two important things:
(1) $\left\langle r_{l,}, r_{k+1}\right\rangle=0$
(2) $\left\langle d_{l,}, d_{k+H}\right\rangle_{H}=0$ for $l=0, \ldots, k$
for $l=0, \ldots j$
"the resimals are \perp "

We can establish these two facts by induction. We start with the following:
(1) $\left\langle r_{0}, r_{1}\right\rangle=r_{0}^{T} r_{1}=0$
since

$$
\text { ce } \begin{aligned}
r_{1} & =r_{0}-\frac{r_{0}^{\top} r_{0}}{r_{0}^{\top} H r_{0}} \cdot H r_{0} \\
\Rightarrow r_{0}^{T} r_{1} & =r_{0}^{\top} r_{0}-r_{0}^{\top} r_{0} \frac{r_{0}^{\top} H r_{0}}{r_{0}^{\top} H r_{0}} \\
& =0
\end{aligned}
$$

(2)

$$
\left\langle d_{0}, d_{1}\right\rangle_{H}=d_{0}^{\top} H d_{1}=0
$$

since

$$
\begin{aligned}
& r_{1}=r_{0}-\alpha_{0} H d_{0} \\
\Rightarrow & r_{1}^{T} r_{1}=r_{1}^{T} r_{0}-\alpha_{0} r_{1}^{T} H d_{0} \\
\Rightarrow & r_{1}^{T} H d_{0}=-\frac{1}{\alpha_{0}} \cdot r_{1}^{T} r_{1} \\
&
\end{aligned}
$$

(Since $r_{1}^{T} r_{0}=0$)
and also

$$
\begin{aligned}
\text { also } & d_{1}=r_{1}+\frac{r_{1}^{T} r_{1}}{r_{0}^{\top} r_{0}} \cdot d_{0} \\
\Rightarrow d_{0}^{\top} H d_{1} & =d_{0}^{\top} H r_{1}+\frac{r_{1}^{T} r_{1}}{r_{0}^{T} r_{0}} \cdot d_{0}^{\top} H d_{0} \\
& =\frac{-r_{1}^{T} r_{1}}{r_{0}^{\top} r_{0}} \cdot d_{0}^{\top} H d_{0}+\frac{r_{1}^{T} r_{1}}{r_{0}^{\top} T_{0}} \cdot d_{0}^{\top} H d_{0}=0 .
\end{aligned}
$$

Now at step $k+1$, suppose we have

$$
\begin{aligned}
& \left\langle r_{l}, r_{j}\right\rangle=r_{l}^{T} r_{j}=0 \quad \forall j, l \leq K \\
& \left\langle d_{l,} d_{j}\right\rangle_{H}=d_{l}^{\top} H d_{j}=0 \quad \forall j, l \leq k
\end{aligned}
$$

Then we will also have the following:
(1)

$$
\left\langle r_{l}, r_{k+1}\right\rangle=r_{l}^{\top} r_{k+1}=0 \quad \forall l \leq k
$$

To see this, first note that

$$
\begin{aligned}
r_{l}^{\top} H d_{k} & =\left(d_{l}-\beta_{l} d_{l-1}\right)^{\top} H d_{k} \\
& =\left\{\begin{array}{ccc}
d_{k}^{\top} H d_{k} & l=k & \sin u \\
0 & l<k & \text { for } \left.l<d_{l} d_{k}\right\rangle_{k}=0
\end{array}\right.
\end{aligned}
$$

As a result

$$
r_{l}^{T} r_{k+1}=r_{l}^{T} r_{k}-\frac{r_{k}^{T} r_{k}}{d_{k}^{\top} H d_{k}} r_{l}^{\top} H d_{k}=0 \quad \forall l \leqslant k
$$

(2)

$$
\left\langle d_{l}, d_{k+1}\right\rangle_{H}=d_{l}^{\top} H d_{k+1}=0 \quad \forall l \leq k
$$

This follows from the expansion

$$
d_{l}^{\top} H d_{k+1}=d_{l}^{\top} H r_{k+1}+\beta_{k+1} d_{l}^{\top} H d_{k}
$$

Notice that

$$
\begin{array}{ll}
& r_{i}^{\top} r_{k+1}=r_{i}^{\top} r_{k}-\alpha_{k} r_{i}^{\top} H d_{k} \\
\Rightarrow & r_{i}^{\top} H d_{k}=\left\{\begin{array}{cc}
\frac{1}{\alpha_{k}} r_{k}^{T} r_{k} & i=k \\
-\frac{1}{\alpha_{k}} r_{k+1}^{\top} r_{k+1} & i=k+1 \\
0 & i<k
\end{array}\right. \tag{*}
\end{array}
$$

Then for $l=k$

$$
\begin{aligned}
\text { for } \ell=k \\
\begin{aligned}
d_{k}^{\top} H d_{k+1} & =\frac{-1}{\alpha_{k}} r_{k+1}^{\top} r_{k+1}+\beta_{k+1} d_{k}^{\top} H d_{k} \\
& =\frac{-r_{k+1}^{\top} r_{k+1}}{r_{k}^{\top} r_{k}} \cdot d_{k}^{\top} H d_{k}+\frac{r_{k+1}^{\top} r_{k+1}}{r_{k}^{\top} r_{k}} \cdot d_{k}^{\top} H d_{k} \\
& =0
\end{aligned}
\end{aligned}
$$

and for $\ell<k$

So we have established that the direction d_{k} that CG moves on iteration k is $H-\perp$ to all previous directions.
Now we will establish that this means that CG will converge exactly in at most N iterations.
Let the error at the k iteration be

$$
e_{k}=x_{k}-x
$$

Notice that since $x_{k+1}=x_{k}+\alpha_{k} d_{k}$

$$
\begin{aligned}
\Rightarrow e_{k+1} & =x_{k+1}-x \\
& =e_{k}+\alpha_{k} d_{k}
\end{aligned}
$$

Unrolling this expression, we get

$$
e_{k}=e_{0}+\sum_{j=0}^{k \prime} \alpha_{j} d_{j}
$$

Now remember that d_{0}, \ldots, d_{N-1} are all $H-1$. Thus

$$
\frac{d_{0}}{\left\|d_{0}\right\|_{H}}, \frac{d_{1}}{\left\|d_{1}\right\|_{H}}, \cdots, \frac{d_{N-1}}{\left\|d_{N-1}\right\|_{H}} \text { is an }{ }_{H-\text { orthobesis for } \mathbb{R}^{N}}
$$

As such, we can write

$$
\begin{aligned}
e_{0} & =\sum_{j=0}^{N-1}\left\langle e_{0}, \frac{d_{j}}{\left\|d_{j}\right\|_{H}}\right\rangle_{H} \cdot d_{j} /\left\|d_{j}\right\|_{H} \\
& =\sum_{j=0}^{N-1} \frac{\left\langle e_{0}, d_{j}\right\rangle_{H}}{\left\|d_{j}\right\|_{H}^{2}} \cdot d_{j} \\
& =\sum_{j=0}^{N-1} \frac{\left\langle e_{0}+\sum_{i=0}^{j-1} \alpha_{i} d_{j}, d_{j}\right\rangle_{H}}{\left\|d_{j}\right\|_{H}^{2}} \cdot d_{j} \\
& =\sum_{j=0}^{N-1} \frac{d_{j}^{\top} H e_{j}}{d_{j}^{\top} H_{j}} \cdot d_{j} \\
& =\sum_{j=0}^{N-1} \frac{-d_{j}^{\top} r_{j}}{d_{j}^{\top} H d_{j}} \cdot d_{j} \quad \operatorname{since} H e_{j}=-r_{j}
\end{aligned}
$$

41

This seems like the appropriate place to mention that $d_{j}^{\dagger} r_{j}=r_{j}^{T} r_{j}$, since

$$
\begin{aligned}
d_{j} & =r_{j}+\beta_{j} d_{j-1} \\
& =r_{j}+\beta_{j} r_{j-1}+\beta_{j} \beta_{j-1} d_{j-2} \\
& =r_{j}+\beta_{j} r_{j-1}+\beta_{j} \beta_{j-1} r_{j-2}+\beta_{j} \beta_{j-1} \beta_{j-2} d_{j-3} \\
& =r_{j}+\sum_{i=0}^{i-1} \gamma_{i} r_{i} \quad \text { for some sulars } \gamma_{i} \\
\Rightarrow r_{j}^{T} d_{j} & =r_{j}^{T} r_{j}+\sum_{i=j-1} \gamma_{j} \beta_{j}^{T} r_{i} \text { o }
\end{aligned}
$$

Thus

$$
e_{0}=\sum_{j=0}^{N-1}-\alpha_{j} \cdot d_{j}
$$

and

$$
\begin{aligned}
e_{k} & =e_{0}+\sum_{j=0}^{k-1} \alpha_{j} d_{j} \\
& =-\sum_{j=0}^{N-1} \alpha_{j} d_{j}+\sum_{j=0}^{k-1} \alpha_{j} d_{j} \\
& =-\sum_{j=k}^{N-1} \alpha_{j} d_{j}=-\sum_{j=k}^{N-1} \alpha_{j} \cdot\left\|d_{j}\right\|_{H} \frac{d_{j}}{\left\|d_{j}\right\|_{H}}
\end{aligned}
$$

By Parseval (for $\langle i,\rangle_{H}$), we have

$$
\left\|e_{k}\right\|_{H}^{2}=\sum_{j=k}^{N-1} \alpha_{j}^{2} /\left\|d_{j}\right\|_{H}^{2}
$$

This is obviously monotonically decreasing with K,
and

$$
\begin{array}{ll}
\text { and } & \left\|e_{N}\right\|_{H}^{2}=0 \\
\Rightarrow & X_{N}=X=\text { true solution! }
\end{array}
$$

Since each iteration of $C G$ is a matrixvector multiply - which is $O\left(N^{2}\right)$ - and We converge in N iterations, $C G$ solves $H_{x}=b$ in $O\left(N^{3}\right)$ computations in general, the same as with other solvers.

BUT, if H is specially structured so that it takes $\ll O\left(N^{2}\right)$ computations to apply, then $C C$ takes advantage of this. The real cost is N applications of H.

In addition, it is often the case that $\left\|e_{k}\right\|_{H}^{2}$ is acceptably small for relatively modest values of k. This is particularly true if H is well-conditioned.
Moral: CG can get an approximate (but still potentially very good) solution using much less computation than solving the system directly.

It also significantly outperforms steepest descent.

Convergence Guarantees
How many iterations do we need for steepest descent or $C G$ to coverge within a certain precision? There are "Worst case" bounds that depend on the condition number K of H

$$
K=\frac{2_{\max }(H)}{2_{\min }(H)}=\frac{\max \text { eigenvalue }}{\min \text { eigenvalue }}
$$

For steepest descent, we will have

$$
\left\|e_{k}\right\|_{H} \leq \delta \cdot\left\|e_{0}\right\|_{H}
$$

in at most

$$
K \leq\left\lceil\frac{1}{2} K \cdot \log (1 / 8)\right\rceil
$$

iterations.
For $C G$, we need at most

$$
k \leq\left\lceil\frac{1}{2} \sqrt{S} \cdot \log (2 / 8)\right\rceil
$$

(these are "natural los")

See shewchurk for a nice derivation of these.
Say the condition number is $K=100$. How many iterations do you need to get 6 digits of precision $\left(\delta=10^{-6}\right)$?

$$
\begin{aligned}
& \text { SD: }\left[\frac{1}{2} \cdot 100 \cdot \log \left(10^{6}\right)\right\rceil=691 \\
& C G:\left[\frac{1}{2} \cdot 10 \cdot \log \left(2 \cdot 10^{6}\right)\right\rceil=73
\end{aligned}
$$

Again, these are worst-case bounds, and performance is typically better.

